
AD-A286 826

$10115

AMSAA 9 L40

SOFTWARE ENGINEERING IN Ada

Presented by: Capt David Vega
3390th Technical Training Group
Keesler Air Force Base, MS

Sponsored by: Ada Joint Program Office (OSD)

Organized by: Herbert E. Cohen
US Army Materiel Systems
Analysis Activity
Aberdeen Proving Ground,
Maryland

I_ 5~,, _ in.b.• :_..' •,.I • •,l C'h' P •

* U. S. ARMY MATERIEL SYSTEMS ANALYSIS ACTIVITY
ABERDEEN PROVING GROUND, MARYLAND

DISCLAIMER NXOTI-Cl

THIS DOCUMENT IS BEST

QUALITY. AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

WEURITY CLA551ICATION OF T.415 PAGE

Fromn Approvd

REPORT DOCUMENTATION PAGE OMIN NO, 0704-

Is. REPORT SECURITY CLASSiFICATION lb. RESTRICTIVE MARKINGSI lassif ed _._OITRIUTIO __AVA________T_____REORT
qW URITY CLASSIFICATION AUTHORITV 3. DISTRIBUTION/ AVAILABILITY OF REPORT

2b. DECLASSIFICATION IDOWNGRADING SCHEDULE Unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUFMBER(S)

6a. NAME OF PEPFORMING ORGANIZATION 6b. OFFICE SYMBOL ft. NAME OF MONITORING ORGANIZATION

CAMSAA AMXSY-MP Same as 6
6c. ADDRESS (City, Stott, and ZIP Code) 7b. ADDREISS (City, State. and ZIP Ccde)
.'tAberdeen Proving Ground, MD 2!005-5071

Ga NAME OF FUNDING /SPONSORING lb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBElk
ORGANIZATION (N a/icabe)

Ada Joint Program Office (OSD)
8c. ADDRESS (City. State, and ZIP Code) 10 SOURCE OF FUNCING NUMBERS

The Pentagon PROGRAM PROJECT TASK WORK UNIT
Washington, D.C. 20301-3081 ELEMENT NO. NO. NO. CCESSION NO.

11. TITLE (include Security Cjanwfication)

Software Engineering In Ada (u).

_1Zj&SONAL AUTHOR(S)
.n ohen (Organizer) 13 .TM CO E DrYPE OF REPORT 13b. TIME COVERED OF REPORT (Year, 4onthDay) 1S. PAGE COUNT

Final FROM TO_ 88/03/22 I 331
16. SUPPLEMENTARY NOTATION

17. COSATI CODES I 18. SUBJECT TERMS (CwWtnu on reverse if necessary and identify by block number)
FIELD GROUP SUI-GROUP Fundementals in Ada, types, control structures, sub

. I programs, packages, exceptions, generics, tasks,
,program desigtn.,,

19. ABSTRACT (Continue on revere if necewury and 6denbfy by lok nufmfber)
Provides a detailed course in Software Engineering in Ada.

95-01574

DIWC QUALITY INBPECT=D

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 121. AaSTIACT SECURITY CLASSIFICATION
," CLASSIFIEDJNLIMITED 03 SAME AS RPT. 03 DTIC USERS Unclassified

ME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (.Iclude Area Codr) 22c OFFICE SYMBOL
"-Herbert F. Cohen ,278-275/6577

DD Form 1473. JUN 86 r.vious edtirons ate Obsolete. SECURITY CLASSIF;CATION OF THIS PAGE
Unclassified

ACKNOWLEDGEMENTS

1 would like to take this opportunity in behalf of the Ada Joint Program
Office (OSD) and the US Army Materiel Systems Analysis Activity (AMSAA) to
express my deep appreciation to CPT Davld Vega of the 3390th Technical
Training Group, Keesler Air Force Base, Mississippi for an outstanding lecture
series in software engineering. Mr. Lou Puckett of the 3300th Technical
Training Wing and CPT William Frey of the 3390th Technical Training Group at
Kessler AFB provided invaluable assistance in coordinating this program tfor
which I am also deeply indebted. The producer/director of the video production,
Mr. Jim Blum of Det2, 1365 AV at Keesler AFB, did an outstanding professional
job.

' The road to final production of these tapes was long and hard hut it
could not have been achieved without the support of two distinguished officers
from the Ada Joint Program Office (OSD). My very sincere appreciation is
extended to LTC(P) David Taylor and MAJ Allen Kopp (AF) of the AJPO (OSD) for
their support and wish them the'very best in their future assignments.

Herbert E. Cohen
US Army Materiel Systems Analysis

Activity
Aberdeen Proving Ground, MD

NTIS G&I
a. DTIC W 0

Unannounoed 5
Just ifction

Distibution/

AvailabilityCodes
Avail and/or

ce plot Speaialr.

REQUEST FOR VIDEO TAPES AND TEXT

1. DOD and other government agencies may obtain copies of tapes and text
S' through the nearest local Training and Audio Visual Support Center.

2. Reference tapes by SAV PIN# 505195.

3. Army/Navy and other government agencies should request tapes by writing:

Department of the Amy
US Army Visual Information Center
Joint Visual Information Activity
ATTN: ASNV-OJVP-CM

-, Tobyhanna Army Depot, PA 18466-5102

• -- PHONE: -(71Z_)..59O-7O63

"4. :Air .Forc. activitiesca*n request tapes by writing:

AFCVIL
1352nd AVS/DOSQ
Bldg #248
Norton AFB, CA 92409-5996

5. Tapes will be tn standard DOD 3/4 inch video cassette; however, 1/2 inch
* VHS formats may also be available on request.

6. The general public can obtain tapes at minimal cost, in any of the formats
specified above, by writing to:

National Audio Visual Center
GSA
ATTN: Order Section
Washington, DC 20409

7. For additional information, contact:

Ada Joint Program Office
Rm 3E114
The Pentagon
Washington, DC 20301-3081

I-

PHONE: (202) 694-0210
AUTOVON 224-0210

or

Director
US Army Materiel Systems Analysis Activity
ATTN: AMXSY-MP (Herbert Cohen)
Aberdeen Proving Ground, MD 21005-5071

PHONE: (301) 278-2785/6577c . AUTOVON 298-2785/6577

LECTURER

CPT David Vega

3390th Technical Training Group
Keesler Air Force Base, MS

C.

TEXT

Text No. 1. Fundamentals of Ada Programing/Software Engineering
(Note-tasking Guide) - 90P-890

Text No. 2. Fundamentals of Ada Programming/Software Engineering
(Study Guide/Workbook) - 90P-893

Text No. 3. Object Oriented Design - 90P-886C.

-fa

C.

HANDOUT 90P-890

-E30AR4924 004
0 _E40ST4924 0(20

Technical Training

Fundamentals of Ada Programming/Software Engineering

-I-. A -" ,. .

October 1987

USAF TECHNICAL TRAINING SCHOOL.
3390 Tcehnical Truainimig Group

Keesler Air Force Base, Mississippi 39534-5000

Authorized for ATC Course Use
DO NOT USE ON THE JOB

ATC gwn 214 J N PWgvsO g .SMI£TIONS Ane 00Ls. IlANOARO C•I•l•S•,

3390 Technical Training Group HO 90P-090
Kct.-lcr AFB3, Mi.•sisippi M9534-500K) l-3OAR4'24 OW1l

L4OST4924 020)
Dc..enihcr l'Jl7

NOIE-TAKING
(GUIE

PbIlwophy

rht* philh.ophy ol the Wing cmcrgcs fnrm a deep ctmccnn l r individual Air Force tfen and women aiid the ncld to pros idc hii•h
ly trained and motivated perumnel o sumtain the mi..i•olfthe Air For". We h.iee the abilitie., %ibnh. aelt.r,,r.t. and di.
nity oi €ch student must b. fully r.ovgniA.d. We helidcv ci.ch must he wiovide.•ihe oppwiunity to pursue and master al % 'r .'c.
patitmal .Np.cialty t6 the full extent of the individual'% caarlahlitie% d wiratdsin 14r the ininiediacmand continuing hbedtit of the
individual. the Air Fmce. DX)D. and the country. To thee and,%. we poivid.i t"itwituniti.% for individual developmen ofl aiai.,l
technical proficiencies. tm-the.job training in challenging jo. ah wnt'. and kilklw-ion gonwth a, .ie.ionrs. In ,.uppvrt of
this individual development. and to lacilitatc maximiun growth of il% %tudent,,. the Wing en arjagv% aiid %upponns the pli•|ess'o•-
a. development of its faculty and administrators. and actively pftmmiteh innovalitm thnrouh ruearch and thl. %harinrU of vof.'¢•,
and material %eiuh other educational inutitution.,

Contents

C'uipiir" I ith Plit',

I. Fundumnenual; uf Ada Svy:em,,

S~ilt , are E i..nc.rin I
Ada L.anguage [cFeatures I.-
Ad., Piogr'ai Librar) I.. ..
Sim ipl Control Structur ' 1-3Ž
Sim ple Inpuut)utput

Baxiw Ada Typc.
Purpe oll' Typing I...2. -
ryplx: ciarw ion. 2-1
Objcct DMclaratitn' . ..- 2.

S.'alaryrs 2.4
.ii...........it 2.

O tter y ' .• 2.1

Control Structures.
Scnietur.d Programmning .. 1.1

Sequential 3.2
(.4,.i •i tit al 1-5
li c ra llv e " .7

4 Suprograms.
Puryo 4.1

Procedurc, 4.1
Functions ... 4-6

5. Packages.
P utlp o s 5 -1
S pecilicatitn 5-4

ilx ly 1 -.3

P riv aic r y ic ,, S 7
Appli atni o l ofPackage's II

6.Excepitmilns
D e v,wln n . x e i n
D eclanng hE ception % . .. '.1
E xccnxw n H andl ers
R aising i• i C ptn 6 -4

7. Ourncr'.
P rtq w gu, i 6 -5

G enic% Dcc Iu e% . 7-4 * :1
(ncric In. . n. tut.. 7-4G a ri D d a di n .. 745 . •
.Q n- ric ar nmlant ramit :ns I ... I.. 747
G en nc P.. m. . w 7 .-5
Generic Fornm al PTak. 7... 7.7
G en c uti l W inc% .. .,,...................................... 7 -9

P u rpok n ... l..
Indepiendent Tus~ks K-I
Coinmunk'utinu T~a~k%-. 8$3
Tasking, SiateI1nwrt% s-1

e. ,

@1

ii

p;:

Student Notes:

FUNDAMENTALS OF Ada SYSTEMS

a Software Engineering

* Ada Wlnguag Features F-1

* Program LMbary
0 Simple Control Structures

4, Simple Input/Output

. Host Computer Operaions

SOFTWARE ENGINEERING

THE CRITICALITY OF SOFTWARE

* Hardware is no longer the dominant factor in the
hardwarewsoftware relationship

* -- Cost

. Technology F-2

* The demand for software is rising exponentially

* The trjt of software is rising exponentially

* Software maintenance is the dominant software activity

* Systems are getting more complex
* Life and property are dependent on software

CHARACTERISTICS OF' -0 SOFTWARE

e Expensive

0 Incorrect

0 Unreliable F-3

* Difficult to predict

* Unmaintainable

C Not reusable

Fundamentals of Ada Systems 1-1

Student Notes:

FACTORS AFFECTING DOD SOFTWARE

"* Ignorance of liot Cycle mplications

F 4 0 Lack of standards

"* Lack of methodologies

"* Inadequate support tools

"* Management

"* Software prof•e s

CHARACTERISTICS OF DOD
SOFTWARE REQUIREMENTS

"* Large

"* Complex

"" Long lived

"* High relabdity

"* Time constraints

"* Size constraints

THE FUNDAMENTAL PROBLEM

F-6 C Our ialbility to manage the COMPLEXITY of our software
"sysaems (G. Sooch)

" Lack of a disciplind, engoemeng Approach

0
1-2 Fundamentals of Ada Systems

Student Notes:

SOFTWARE ENGINEERING

THE ESTABLISHMENT AND APPLICATION OF SOUND ENGINEERIINIG

* Environments

* Tools F-7

* Methodologies

9 Models

SOFTWARE ENGINEERINI3

COMBINED WVITH

0Standards F-8

a Guidelines

*F~actices

SOFTWARE ENGINEERING

TO SUPPORT COMPUTING WHICH IS -

e Understandable

*Efficient

a Reliable and safe F-9

e Modifiable

* Correct

THROUGHOUT THE LIFE CYCLE OF A SYSTEM

(C. McKay, 1985)

Fundamentals of Ada Systems 1-3

studemt Notes:

SOFTWARE ENGINEERING

" Purpoies
F 16 * Concpts

"* Mechantams
"* Notation

SE1. Sep 156S -fl

PURPOSES

* Create iotnware systems accoraing tu good engineerit•i ,:..
0 Manage elements within the software life cycle

CONCEPTS

F-12 0 ODvt the avchemctue of software systems

S Spify module of the ssteem

1-4 Fundamentals of Ads System.

Student Notes:

MECHANISMS

0 Tools for:
Wriling operating systems

- Tuning software

- Prototyping

0 Techniques for: F-13

- Managing projects

- Systems analysis

- Systems design

* Standards for:

- Coding

- Metrics

- Human and machine interfacing

NOTATION

* Languages tor writing linguistic models F-14

* Documentation

USAGE

"e Embedded systems

0 Data prm ssng

"e Control F-15

"* Expert systems

"* Research and development

"* Decision support

". Information management

Fundamentals of Ad& Systms 1-5

student motes:

CONTENT AREAS

* Communication skills
* Software development and evolution processes
* Problem analysis and specification
* System design

F-16 * Data Engineering
"* Software genieiation

"* System quality
"* Prodecinmnagenivit

* Software tient i ikenn project s

SEt, June 19-3F

PROGRAMMING LANG~UAGES AND
SOFTWARE ENGINEERING

*A programimmg lanquitge is a software eng'neeriig tool dsgF-17 * A programming language EXPRESSES ano EXECUTES dsg
methodologies

*The quaihty of a pi-ogramming language for software erigineering
Is determinmn. by how will it suppons a design methodology and
its underlying models. principles, and concepts

TRADITIONAL PROGRAMMING LANGUAGES
AND

SOFT WARE ENGINEERING

No 1itegd the Wft t

F-18MINwýimefgAm~l

TOOLS

a UiOL N 1 CMEU TOOL

1-6 Fundam"Wel of Ads Systems

Student Notes:

•O Ada
AND

SOFTWARE ENGINEERING

As * Wia Itew 'e.enwws•" to euppwe
@siheow- w ea e -

3* lon " m " mmpw 0 1mpiss.
00i me"t to NOWe .mie Uqes -i

* b Mt lit 1glaI UI baguws)
* to, m a erasdwlig eumundy

ENVIONMENTS
STANDARDS TOOLS T

CONCEPTS 0
G U 1O L I N E S PRINCIPLESMODELS
P R ACTIC E S METHODOLOGIES L

PRINCIPLES OF SOFTWAREJ ENGINEERING

0 Abstraction

e Modularity

* Lolimzation F.20

* Information hiding

* Completeness

* Confirmability

* Uniformity

(Ross, Goodenough, Irvine, 1975)

ABSTRACTION

0 The process of separating out the important parts of something
while ignoring the inessential details

* Separates the "what" from the whow F-21

e Reduces the level of complexity. 0 There are levels of abstraction within a system

Fundamentals of Ada Systems 1-7

Student Notes:

MODULARITY

"* Purposeful structuring of a system into parts which work

F-22
together

"* Each pan performs some smaller task o0 the overall system

"* Can concentrate and develop parts indepenoently as long as
Interfaces are delfined and shared

"* Can develop Merarnhie s of 0management and implementation

9

LOCALIZATION- . -

"* Putting things that logically belong togelner --,ii" tne s.,,.
physical place

F-23 INFORMATION HIDING- -

"* Puts a wall around localized details
" Prevents reliance upon details and causes locus of inttrntlor; Il

interfaces and logical properties

COMPLETENESS

"* Ensuring all important parts are present

"e Nothing left out

F.24 CONFIRMABILITY

"* Deoping prts that can be effeciveily tested

UNIFORMITY

"* No unnecessary differences across a system

1.8 Fundamental* of Ada Systems
Ud --

Student Notas:

Ads LANGUAGE FEATURES

DATA TYPING

The Imposition of structure on data values
manipulated by a programming langoage

40061018101 -1-M.ADE 4poUIWV ww=L w~SIUM.
iii'n .,Ihf") F-25

u •n11S1

S11¶100!10'10119i111010110111.111 P (NAB X .1TWTE X SlEX,

C10jai

QO . A data type defines a set of values that objects of the type may
assume and the set of operations that may manipulate them.

TYPE VALUES OPERATIONS F,26
AGE-TYPE Positive, Exact Numbers +, -/,

PERSON TYPE Names x Birthdates Examine Name of Person,
x Sex Examine Sex, Assignment...

DESIRABLE REASONS TO TYPE DATA

* Factorlzation of Propeflies, Maintainaiiility F.27

"a Reliability

"a Abstraction, Information Hiding

(Rationale for the Design of the Ada Programming Language)

0
Fundamentals of Adae Systems 1-9

Student Notes:

STRONG TYPING

"* Ada is a strongly typed language

"* All objects must be declared to be of & paflicular type

F-28 o Different types may not be Implicitly mixed

"* perations; on a type must preserve that type (remain within set
of values)

MY-AGE + PERSON - ILLEGAL

TYPE DECLARATION

F.29 9 Creates a type name

"* Specifies the set of values and set of opeiitiions tl, tn type

type TYPE..NAME is r'set ot values and opeatim(,., I

TYPE DECLARATION

F1-30 TYPE I VALUES i OPERATIONS

AGE.TYPE 0, 1, 2...130 Those applicable to i.
"Iler values

MONEY_•Y'P Real values between 7hose applicable - ""
0.0 and 100.0 real values

MAX-AGE: constant : 130

type AGE-TYPE is range 0.. MAXIMUM-AGE

1-10 Fundamentals of Ads Systems

Student Notes:

OBJECT DECLARATION

e An instance of a given type

* A name for a storage location whose structure is that defined for F31

me type

MY AGE AGE-TYPE:
YOUR AGE : AGETYPE:
NO-MONEY constant MONEY-TYPE :- 0.0;

- - A simple program that adds three

- - ages together

procedure ADDAGESTOGETHER is

MAXAGE : constant :- 130;
type AGE TYPE Is range 0 .. MAX-AGE: F-32
JOHNS AGE AGE TYPE : 10:
MARYS AGE AGE TYPE " ; 40;
JANS AGE AGE TYPE "= 20:
TOTAL AGETYPE "- 0;

begin

TOTAL '- JOHNS AGE + MARYS-AGE + JANS AGE:
end ADD AGESTOGETHER:

CLASSES OF Ada TYPES

* Scalar
* Discrete

* Integer Types F-33

* Enumerated Types
* Real

"* Fixed Point

"* Floating Point

0
Fundamenwtas of Adia Systems 1-11

Student Notes:

* Composite

0 Array

* RecordF .34 * Access

* Pnvate £

* Private

e Task

SYSTEMS ENGINEERING

a Analyze problem

F-35 @ Break into solvable parts

0 implement parts

* Test parts

e Integrate parts to form total system

e Test total system

REQUIREMENTS FOR EFFECTIVE
SYSTEMS ENGINEERING

F-36 e Ability to wmpms archiectuew

e Ability to define and enforce IMdaes

a Ability to create independent component.

* AbIlity to separate architectural issues from implementation iswues

1.12 Pundeaw ntals of Ads Bystnmo

Stidant Noes:

PROGRAM UNITS

"* Components of Ada which together form a working Aa software
system

"* Express the arcitecture of a system F-37

"* Define and enforce interfaces

PROGRAM UNITS

91SUPROGRAMS Woadfng go npgto-t
IkI m' ~-imdo

actio F-38

TABKS Porlom. acios. in-wlo wit o~
Proem" units

T PACKAGES A m in t fl r

jtogeth into longhl

PROGRAM UNITS

* *• Consist so Uwo pauiw sepfleoUln and bdy

Pc KfWCAI'WOI: 01 SU0Y

mWec" betweein s F-39
Woprm unit mid after
pggpm flntS Mwi WHAT) h

0
Fundamentals of Ada Systems 1-13

9110"m Notes:

PROGRAM UNITS

"* Th pec wifiation of the Diogram unit i11sth only meni s ot
Coonecting p1rogram unlit

IF-40 * The interlace is enforced

"* TNo body of a program unit is not accelsioie to othef p0oQram units
"* There Is a dealr ditliction between architoctull aiid

emplementalton

AUSTRACT ACTIONS

SPerforrm isom discrete activity

F' .41 A w met

Si --- M a, . ,.

DISCRETE COMPONENTS

F-42 0 Allow a system to be composed of black boxes
"* Provkfe clear, understantlable fuhclions

"* Black boxes can bi more fitectivety validaled and verified
"* Avllent Across engineering dllciPlines

1-14 Fundlmental. of Ads Sytoemt

Student Notes:

- GLD UMBER 1
.-. G•F...umBE, (FrnsI) - -• •-. -

* " "-AOD (FIRST, VECOID,.T{O,•. ."-" -

"*' . OlSetLAY(TOTAL) "

-SUBPROGRAMS

"* A program unit that performs a particular action

- Procedures

- Functions F-44
* Contuins an interface (parameter part) mechanism to pass data to

and fMm the subprogram

"* The bausic discrete component which acts like a biak box

"* Gives ability to express abstract actions

SUBPROGRAM STRUCTURE

SPECIFICATION

F-45

SDY

Fundamentals of Ada Systems 1-16

Situdent Notes:
SPECIFICATION

F46

FORIAL PART

4

BODY

F-47
CG

•) EXECUTABLE

S~PART

procedure ADD.NUMBERS is

MAXHUM constant - 40;
Local type NUMBER.TYPE is runge 0 MAX-NUM;
Doeclartione op NUMBER.1. NUMBER.2. NUMBER.3.

F48 TOTAL NUMBER.TYPE :- 0:

begin

NUMBER.1 :- 1;
Executable j NUMBER-2 '-NUMBER-1 + 1:
Part NUMBER_3 :- IIUMBER-2 + 1,

TOTAL *a NUMBER_1 + NUMBER_2 . NUMBER.3,

end ADD.NUMBERS;

1.16 Fundamentals of Ads System.

Student Notes:

procedure ADDNUMBERS is

MAXNUM : constant :- 40;
type NUMBER-TYPE is range 0 MAXNUM.
NUMBER-l, NUMBER_2, NUMBER_3,
TOTAL : NUMBER-TYPE :- 0:
procedure INCREMENT

(ANUMBER in out NUMBER-TYPE)
is separate;

begin

INCREMENT (NUMBER.1):
NUMBER_2 :- NUMBER.1;
INCREMENT (NUMBER.2);
NUMBER_3 :- NUMBER_2:
INCREMENT (NUMBER.3);
TOTAL :- NUMBER_1 + NUMBER_2 + NUMBER_3;

end ADD-NUMBERS:

separate (ADD-NUMBERS)

procedure INCREMENT
(ANUMBER : in out NUMBER-TYPE) is

begin

A-NUMBER :- A-NUMBER +1:

end INCREMENT;

with TEXTIO;

procedure SAYHI is
MAXNAMELENGTH : constant :- 80;
subtype NAME-TYPE is STRING

(1..MAXNAMELENGTH);
YOUR-NAME : NAME-TYPE :- (others -
NAME-LENGTH : NATURAL :- 0;

"begin

TEXTIO.PUTLINE(OWhat is your names?);
TEXTIO.GETLINE(YOURNAME, NAMEtENGTH4:
TEXTIO.PUT(OHio):
TEXTIO.PUT.LINE(YOUR.NAME(1..NAMELENGTH));
TEXT.IO.PUTL!NE(*Have'a nice day'!'):

end SAYHI;

Fundamentals of Ada Systms

Student Notes:

SOFTWARE COMPONENTS

,./

e Logically and physically self-contained software resources
F-52 * Similar in benfilt to hardware components

a Provide a convenient mechanism for implementing a reusable
program

PACKAGES 1•

* PrognVI unite that allow us to collect logically related endUes
In one physuil place

SAllow the definltion of reusable soltware comnponents/

* A fundamental foture of Ada which allow a change of mend.
"set

* An w orintad feature

F-53 --•• ~i 42 -•..... 1 ..

Li

PACKAGES
s Place a "wall" around rsources

a Export resour•es to users of a package

* May • •oain local eoourcese hkdden from the uaser of a

F O54

1-18 Fundamentals of Ada Systems

Studenit Notes:

•O STRUCTURE

SPECIFICATION
SODT

F-55

" Doeine@ resore * Definee Impemkmmum
avaeabe I* user of mmourso,
of the pelkae a Conumis Iocan me.u.e

"* VIkae to user 0 Hidn from mue

package CONSTANTS is

PI constant "- 3.14159
e constant :- 2.71828; F-56

(,'I~nd CONSTANTS:

with CONSTANTS:

procedure SOME-PROGRAM is

MY-VALUE : FLOAT :- 2 ' CONSTANTS.PI'

begin

null;F-57

end SOME-PROGRAM;

with CONSTANTS;

." procedure ANOTHER.-PROGRAM Is

ANOTHER-VALUE : FLOAT :- 2 CONSTANTS.PI;

begin

null;

(d ANOTHER.PROGRAM;

Fundanmentals of Ads Systems 1-19

Student Notes:

package ROBOT CONTROL is
type SPEED is range 0 .100.
type DISTANCE is range 0 500.
type DEGREES is range 0. 359.
procedure GO. FORWARD

f'ýL (HOW.FAST : in SPEED-
MOW.FAR :ini DISTANCE):

procedure REVERSE
(HOW-FAST in SPEED;

HOW..FAR in DISTANCE).
procedure TURN (HOWMUCH'in DEGREES);

end ROBOT.CONTROL: -

with ROBOT CONTROL; -
procedure DO.A.SOUARE is

beg in
ROBOT-AONTROL.GO..FOWARD(HOW FAST IGO'

" ' ~~HOW .-FAR "• J

ROBOT.CONTROL.TURN190} .
ROBOT-CONTROL.GOFORWARD(100 .2a)
ROBOT.CONTROLJTURNC 90),
ROBOT.CONTROL.GO.FORWARD(100. 20).-
ROBOT-CONTROLTURN%190)
ROBOT-CONTROL.GOFORWARD(100, 20).
ROBOT.CONTROLTURN(90).,

end DO..A-SOUARE.

package body ROBOT.CONTROL is
procedure CLEAR.PORT is
begin

end CLEAR-PORT
procedure GO.FORWARD

(HOW.FAST in SPEED,
HOW-FAR in DISTANCE) isbegin

ead GO-FORWARD:
procedure REVERSE (HOW.FAST in SPEED_

HOW.FAR in DISTANCE) is
begin

end REVERSE;
procedure TURN (HOW.MUCH in DEGREES) is

begin

eAd TURN;

end ROBOT-CONTROL,

Fundamentals of Ads Systems

Student Notes:

(S package NUMBERS Ii

MAX...NUM constant :- 40;
type NUMBER...TVPE Is range 0. .MAX..NUM;
procedure INCREMBIT

(A..NUMBER in out NUMBER...TYPE):

end NUMBERS;

* -.
- : e. -

..- .� - -a- �

witht4UMBtRS: - - - t

pro.ce'bure ADD...NUM8ERS is -

NUI�BER...1, NUMBER...2. NUMBER...3,
TOTAL NUMBERS.NUMBER...TYPE :- 0�

use NUMBERS;

begin F42

NUMBERS. INCREMENT (NUM9ER..1);
NUMSER..2 :- NUMBER.A:
NUMBERS.INCREMENT (NUMBER...2);

* NUMBER...3 :- NUMBER..2;
NUMBERS. INCREMENT (NUMBER...3);
TOTAL :- NUMBE�1 + NUMSER...2 + NUMBEA..3:

end ADD...NUMBERS:

SOFTWARE REUSABIUIY

e Studios show that between 50% and 75% ot cod. withifi a system
Is duplicated F-

e Treats software systems as a collection of potentially reusable
corriponents

. Must be a goal throughout the life cycle

Fundamentals @1 Ada Systems

resuw1i NowS:

GUNURICS -

*~~O leple eWe*W ofpp~ pe.kee

F-e64be pe~tdad

NOW ia Ta...

AnMWP PE~n" o a OlEFTo:"""IM

F46 r~

1.1 Fuannil ofAdJI~

Student Notes:

With GENERICINTEGERSWAP;
~ Oprocedure SWAP.VALUES is

KW- MAX-COUNT : constant :- 200;
type COUNT is range 0..MAXCOUNT;
procedure ;NTEGER.SWAP

is new GENERIC-INTEGERSWAP (INTEGER);
procedure COUNT-SWAP

is new GENERICINTEGERSWAP (COUNT):

INTEGERI1 INTEGER :- F0; F67
* INTEGER_2. • INTEGER :- 20;

COUNTI ' COUNT :- 100:
COUNT_2 COUNT "5 50;

begin
INTEGER-SWAP (INTEGER.1, INTEGER_2):
COUNT-SWAP (COUNT.1, COUNT_2);

end*SWAPVALUES;

i % I

II I

typeANYVIECER TYPMmeis -.- ;
pnrocedure 0ENEMI.C.NT=U.WLAP (LFT.' F-

RIGHT: in out ANY.INTEGER.TYPE);
prmedum GENERICjNTEGER.WAP (LEFT. RIGHT: In out

ANY-INTEGERoTYPE) is
TEMP: ANY-INTEGERTYP(E:m LEFT;

begin
LEFT : RICHT;
RIGHT :a TEMP;

end GENERICJNTEGERJWAP;

. generic
type ELEMENT-TYPE is private;

procedure GENERIC-SWAP
* (LEFT, RIGHT : in out ELEMENTTYPE):

procedure GENERIC-SWAP
(LEFT, RIGHT : in out ELEMENT-TYPE) is F.9

TEMP , ELEMENT-TYPE :- LEFT;
begin

LEFT RIGHT:
RIGHT " TEMP:C. end GENERIC-SWAP:

Fundamentals of Ad Systeme 1-23

Student Notes:

with GENERIC-SWAP:

procedure SWAP-THINGS is

MAX-COUNT: constant: - 100;

type COUNT
is range - MAX-COUNT . MAX-COUNT:

type COLORS is (RED, BLUE, GREEN):

type REAL is digits 10:

F-70 procedure SWAP-COUNT
is new GENERIC-SWAP (COUNT):

procedure SWAP-COLORS
is new GENERIC-SWAP (COLORS),

procedure SWAP-REAL
is new GENERIC-SWAP (REAL),

COUNT1 : COUNT :- 5;
COUNL_2 COUNT := 10:

COLOR_..1 COLORS := RED:
COLOR_2 COLORS :- BLUE;

REAL_ 1 REAL :u 20.0;
REAL_2 REAL "= 40.0:

begin

SWAP-COUNT (COUNT-l, COUNT-2);
SWAP-COLORS (COLOR-t. COLOR_2):
SWAP-REAL (REAL-1, REAL_2):

end SWAP.THINGS:

1-24 Fundamentals of Ads System.

Student Notes:

Ada PROGRAM LIBRARY

"* A record of all the separately compiled program units that make up
a program

"*OCntral facility for the development of Ada systems

SEPARATE COMPILATION
* P~spam unit may be oeps.ayetompb

* Spawmt -oft""m i sls P ose" seof1the
se~pwmtlh of epecfktfaon Ad boy

• A , yom W, put.,%t= r by r-A-em-i ui,
8p6sM;* 0 r lgmm wnts F-72

SEPARATE COMPILATION

* A ppmwolaq. pectlsetsnay be enmle *6apavaswW*eM

• Reeihsa no only a Ick"st dtlanPloI betweon aertuh u endW
bp! i @ftlaon, bWA amso a physloe dlstninton

Fundamentals of Ads Systems 1-25

Student Notes:

SEPARATE COMPILATION

F-74 * Allows development of nflependent software components
* Currently we all but loss Mte human effort going into software it is

SSeparalte compilation allows us to reuse components and keep our
mlowment

Tm

soFTWADE COMPONTSLAT

1-26~~~~~~ Fudmnilo doya

coMPDOWVN'f5 LISRAPtY ""

F-75 -"""

PRqOJICT'I

INDEPENDENT COMPILATION

F~irC S Widey smed
* do~dues have no way of sharing knowledge of properhes defined in

other mdleiss

* JUee lower level of camplle-tlme checking 01 consistency between
voltatha sll possiblel~k within a single compilation unit

1-261 Funldametals of Adak Siysllltem .s

Student Notes:

SEPARATE COMPILATION

"* Uset the program libraty to pe•rm the same level of checking
F-77

between units whether compiled in one compilation unit or many

"* Resolves safcty w~th reasons for ompiling in parls

• Ada. COMPILATION MODEL.'

I " -I - C 17 ""
. -

-T I.• i•- F-78

COMPILATION UNIT

* A Phpleel-1l Ads prV"W' i I8 0am5"U01 of osu0PIOsoe
wbft mummnod to Utisapm pr sepwamey

Fundam entals , of Ad Byelveno 1-2?

Student Notes:

00M.ATIMM we? osaee"TO wDiJ COMMIAOWU MOT

F-80

%i

Ads PROGRAM

CONTEXT CLAUSE

iper., Pmvenuiy GDpd anwd rosa , u 1 u in
eguletlton uwlt

F-81
WY ..W T .NA % 6;

am A. W A. 4. 4ý

UBRARY UNITS

9 Subprogram declaration (specifcation)
F-82 s Pacage declaration (specificaion)

* Generic deciration (specification)

* Generic instantiation

s g•utprogram body (specification and body)

1-28 Fundamentals, of Ada Systems

Studenit Notes:

procedure PRINT-MYNAME;

F-83

Mperka TEST-OPERATIONS Is
type TEST-SCORES ks meg. 0-100;
pmooddws SWAP (FIRST. SECOND: in out TEUtSCOME);.
lucioni SECONOJLGREATIR "FRS. SECOND: in TUataColUS)

r@Wmi SOOLEAN;,
end TEST-OPERATIONS;

* F-84

with PmdNtIY..IAME, UTIOTPERAflONS;
ptonodumU TOIJUSR bs

MtTEST : TOT-OPERANONS. TOT-SCORNS :am Is;
YOLUJUT : -,VSTOPVIATMMN. TU5tSCOfES 9 ;

TESLOPMATIONS. SWAP MYEBT. YOURJ`=rX

Fundamnentals of Ada Systems 149

Student Note:

SECONDARY UNITS

a Library unit body

F8-.- Subprogram bodyF-66
- Package body

* Subunit

Wedoemt Mr-MY..-NAME is
begin - PRINT.MY.NAME

end PRINT-MY.NAMEM

F-87

package body TEST-OPERATIONS is

procedure SWAP
(FIRST,SECOND : in out TEST.SCORES) is
TEMP : TEST-SCORES:

begin -- SWAP
TEMP :, FIRST;
FIRST :- SECONdO

F-88 SECOND :, TEMP:
end SWAP;

function SECOND.IS.-GREATER
(FIRST. SECOND : in TEST-SCORES)

return BOOLEAN is
begin -- SECONDISGREATER

return SECOND>FIRST;
end SECOND-ISGREATER;

end TEST0OPERATIONS;

1-30 Fundamentals of Ada Systems

Student Notes;

PROGRAM USRARY

LIBRAY UmiTs SECONDARY UNITS

(INS

SUBUNITS
PIC eur COUNTING Is

t 4"S ALL--UM"ERS Is - g 11-10;

VALUE: SMALL.UJUUUI;

proI diare INCREMENT (NUMBER: In wA SUALL.NUSRS)

SUBUNITS

buegin- COUNTING mF-9VALUE: a 1L; UR4 1;
rd INCREMENT (VALUE).

SUBUNITS

-Visibility rules for the subunit am the sam as If
the code was embedded as before

Fundamentals of Ada System 1-31

student Notes:

CONTROL STRUCTUR98

F-92

"* Control flow of executable sequence of statements

"* Define internal logic of a program unit

ASSiIGNINT ITATM§NT .

procedure CALCULATE.TOTALS it

MAX.VALUE : Constant :w 1000,
type VALUES is range,0.,MAX.VALUE:.

f-93 VALUE.1, VALUE.2, VALUE.3 VALUES 10.
VALUE.4, VALUE.S, VALUE.6 VALUES - 0,

begin

VALUE.4 : 20W
VALUE.5 VALUE.4 + 10,
VALUE. H' (VALUE.5 2) ' VALUE-1;
VALUE.O : VALUE-O + VALUE.1 - VALUE-2,

end CALCULATE.TOTALS,

package NUMBERS is

MAX.NUM : constant :-- 40;
F-94 type NUMBER.TYPE is rangs 0,,MAX.NUM;

procedure INCREMENT
(ANUMBER In out NUMBER.TYPE):

end NUMBERS:

1.o
1.32 Fundamentl. ootAda Systems

Stuldet Notes:

PROCEDURE CALL

with NUMBERS:

procedure TOTAL.VALUES it.

MYVALUE.: .IUMBERS.NUMBER.TYPE :, 0;
YOUR-VALUE : NUMBERS.NUMBERTYPE ', 4:
ust NUMBERS;

begin F-95

"MYVALUE -: MY-VALUE + 1;
NUM9ERS..INCREMENT-(MY:VAt-UE) ;*-

" "".Y -RVALUEr ,-.-) . - "
INIJMBEIqS:. Ktt4A T(fLý

enTd O'T. AL-_ -VAi' "

package body NUMBERS Is

procedure INCREMENT

(ANUMBER In oiut WUMBERTYPE) Is F-96

begin

A-NUMBER :, A-NUMBER + 1:

end INCREMENT;

end NUMBERS;

OF STATEMENT

I COND11N se6
STATN; F-97
STATOEN;
STATOWN;

FunCdmsntals of Ads Syttims 1-33

Studen! N•otese:

wilth NUMBERS.
procedure COUNT-UP it

4IY.NUMBER NUMBERS NUMBER. TYPE 10
YOUR-NUMBER NUMBERS.NUMBER._TYPE 0
use NUMBERS,

begin

F -98 NUMBERS INCREMENT (MY-NUMBER),
if MY-NUMBER - 11 Ithn

YOUR.NUMBER - , 6;

NUMBERS INCREMENT (YOUR.NUMBER),
If YOUR-NUMBER -, then

NUMBERSSNCREMENT (YOUR.NUMBER),
NUMBERS, INCREMENT (MY.NUMBER).

Mld if,

end COUNT.UP:

IF STATEMENT

it THESKYIS. BLUE then of THF.SKY.IS.SLUE then
THERE -ARE.NO .CLOUDS, THKE.ARENO.CLOUDS

else lsit THE .SKY.IS.RED then *
THERE.,ARE -CLOUDS. iTISMORNINL.,

F.99 THE.SKY.ISNOT.BLUE, IT.IS.EVENING;

end It- elsif THE.SKYIS.GREEN then
WEHAVEPROBLEMS,

else
WHO.CARES:

end i,

LOOP STATEMENT

with NUMBERS;
promdum COUNT.UP Is
MY.NUMBER : NUMBERSNUMBER TYPE :, 0:

F 100 ue NUMF:RS:

begin

NUMBERSINCREMENT (MY-NUMBER),
exit when MY..NUMBER - NUMBERS MAX.NUM,

ploop;

end COUNT-UP:

,•34 Fundamentale of Ads Systems

Student Notes:

INPUT/OUTPUT

TEXT-1O

9 A predefined package that provides input and output facilities for F-101
textual (human readable) objects

. Contains O f acilities for strings and characters and generic
facilities for iagers, enumerated, tud and floating point types

TEXT-1O

Peda. TFXTIO AM 96. e l•yoW Opeggam
" AN tll. mulumgmeM

PUTO m e GEWT CHARACTER& Su STh1iM

KbE3YPU F-102

0011014 0 pock""e

-,sm a --IPO. AWe -~

GENERIC TEXT-JO

TIO O .OATJO

-............. J bo......• '

Fundamnwtals of Aria Systems 1-3S

iii n W5

Student Notes:
STRING I/O

w ith T EX T .S.I O:
1/0

procedure OUTPUT-TEXT is
MAXLENG(H : constant :- 20,
subtype LINE.TYPE i5 STRING(I, MAX-LENGTH)
MY.LINE LINE.TYPE :- (others -> ')

F.104 begin
TEXT.-IO.PUT(*HI THERE,');
TEXT.IO.PUT(" 0):
TEXT.IO.PUT(*WELCOME TO Ada");
TEXT.tO.NEW.LINE;
TEXTJO,PUT(MYLINE)
TEXTIONEW.LINE;

end OUTPUT.TEXT;

HI THERE, WELCOME TO Ads

MrRING I/O

with TEXT-IO:

procedure OUTPUT-TEXT is 9.)
F-105 MAX.LENGTH : constant '- 20;

subtype LINE.TYPE is STRING (I ,MAX.LENGTH)
MY-LINE ' INE-TYPE :- (others => 'l)

begin
TEXT.IO.PUT.LINE ('HI THERE.');
TEXTIO.PUT.LINi ('WELCOME TO Ada");
TEXT.-IO.PUTLINE (MY.LINE);

end OUTPUT-TEXT;

HI THERE
WELCOME TO Ada

MTING 1/O

package LINE-PACKAGE Is

F.106 MAX-LENGTH : constant :- 20:
subtype LINE.TYPE is STRING (1,MAX.LENGTH)

end LINE.PACKAGE

1.36 Fundamentals o Ada Systems

Studet Not"s:

STRING VO

with TEXT-IO, LINE-PACKAGE;

procedure ECHO-NAME Is

NAME : L INEPACKAGE .LINE.TYPE :-(others-'); F-107

begin

* TEXTIO.PUT (-ViAT IS YOUR NAME?,):
TEXT.IO.GET (NAME);
TEXT.IO.PUT ('Hl');
TEXTIO.PUTLINE (NAME);

end ECHONAME:

(0
CHARACTER-10

with TEXTIO, LINE-PACKAGE:

procedure ECHO-NAMES Is

NAME : LINEPACKAGE. LINETYPE:- (others "->'
ANSWER : CHARACTER : N ''

beg i n F-108

TEXTIO.PUT (WMHAT IS YOUR NAME?'):
TEXT.IO.GET (NAME);
TEXTLIO.PUT (-HIW);
TEXTIO-.PUTLINE (NAME);
"TEXTIO.PUT ("MORE NAMES?(Y TO CONTINUE):*);
TEXTIO.GET (ANSWER);
TEXTIO.SKIPLiNE;
"exit when ANSWER /-'Y' or ANSWER/- y;

end loop;

end ECHO-NAMES;

4

Fundamentals .f Adam Systems 1-3

Student Notes:

GENERIC VO

with TEXT-1O, LINE-.PACKAGE. NUMBERS:

procedure ECHO-.AGE is

package NUMBEA-10 Is now TEXT..10.INTEGER-1O
(NUMDERS.NUMBER..TYPE);

NAME :LINE-PACKABE.LINE-TYPE u

~ 109(others _> ,);
F19AGE NUMBERS.NUMBERL TYPE 0ý C

begin

TEXT-.1OPUT (0WVHAT IS YOUR NAME:")
TEXT-IO.GET (NAME)'
TEXT-IO.PUT ('HOW OLD ARE YOU' "
NUMBER..IO.GET (AGE);

TEXT...IOPUT (NAME);
TEXT..IO.PUT (', YOU ARE)
NUMBER...O.PUT (AGE);
TEXT-JO.PUT..LINE (YEARS OLD-l).

end FCHO..AGE;

1.38 Fundermentallu of Ads Systmens

Student Notes:

BASIC ADA TYPES

9 Purpose of Typing- B.1

* Type Declaratlos

e Mod~ DedwaftIm
* Class of 8Uic Ads Types

* *.* * •. .* .

,-..- - -' ." .

. -. - ' -. • .~. * .

TYPING

B-2

A • Atyp dfines a set of values and a set ooperations appcable to
Mose vim for obifst of that type

PURPOSE OF TYPING

* To impom Iuclul on data for

. eFactorbstio of Pmllh, Minklablty B-3

I .eReliablilty

.. Abstraction, Hiding of implemenlation Details

Basic Ads Typea 2-1

Student Notes:

STRONG TYPING

4-4 * Every OWjct must have a specified type that is static

• Cannot mix objects 0o different types without explicit conversion

-1

TYPE DECLARATIONS

B-5 * Construct used to define a new type

* Creates a new type name which is 1,t,'1 from Othr.. 1Ames

e Form
type TYPE.NAME is [CLASS OF TYPE]J

TYPE DECLARATIONS

typ COUNT is m 0 .. 500: -- IntrW type
type SCALE is (LOW. MEDIUM. HIGH); -- enumerated type
type WEIHXT is ft 10 nap 0.0.. 1000.0: - - floauti point type
tjpe CURRENTf d* O.0e rane " 0.0.. 100.0: -- fzd point type

tp CHARACTER COUNT i array (CHARACTER) of COUNT, - - a&ay type
type CLASSIFY is r~ rd -- recdr p typo

VALUE: WEIGHT;
CATEGORY: SCAJ;

end record;

2-2 Basic Ada Types

Student Notes:

OBJECT DECLARATIONS

"* An instance of a type -7

"* Reserves storage wtth tho structure detfrie by the type

"* Form

OBJECT-NAME: TYPE NAME:- INrTIALVALUIE:

OBJECT DECLARATIONS

TOTAL..COUNT COUNT - 0.

RATING SCALE :- LOW:

(r SMALLEST WEIGHT WEIGHT :- 0.0:. - B-8

LINE CURRENT CURRENT :- 0.0.

HOW MANY CHARACTER COUNT :, (others -> 0):

VALUE-CLASSIFICATION CLASSIFY :- (0.0. Low):

FORMS

VARIABLE
TOTAL-COUNT COUNT : 0 0; B-9

CONSTANT
SMALLEST-WEIGHT constant WEIGHT :- 0.0:

NAMED NUMBER
* MAXIMUM-COUNT • constant ", 100;

Basic Ada Types 2-3

Student Notes:

with TEXT QD:
procedure TOTAL NUMBERS is

NUMBER TO GET : onstant: - 5;

MAXIMUM-NUMBERS: constant -- 10,
type NUMBERS is range 0.. MAXIMUM-NUMBERS ,NUMBER TO GET,
subtype INPUT-NUMBERS is NUMBERS range 0 MAXIM UMN NUMBERS.

A-NUMBER: INPUT NUMBERS : - 0:
8-10 TOTAL : NUMBER9 :. 0:

package NUMBER-10 is new TEXT tO INTEGERIO(NUMBERS),

begin

for TOTAL LOOP in 1. -NUMBER TO GET loop
TEXT IO.PUT(*Number -) *);.
NUMBERIO.GET(ANUMBER):
TOTAL: - TOTAL + 1 -NUk,'BE R:

end loop,
TEXT 10. PUT(wrotaI o1 nu~mbers is");
NUMBER IO.PUT(TOTAL)

end TOTAL NUMaERS:

ADA TYPES

"* SCALAR - single values
99 DISCRETE - exact values

m:-INTEGER
e. ENUMERATED

ee REAL - approximate values
6.11 c" FIXED Point - absolute

a". FLOATING Point - relative

"* COMPOSITE - multiple values
so ARRAY - homogeneous (components have same type)
so RECORD - heterogeneous (components may have

different types)
"* ACCESS - dynamic vaflabiet
"* PRIVATE/LIMITED - abstract data types
"* TASK - designate tasks

SCALAR TYPES

B- 12 9 Objects contain a single value
9 Values are orderod W

2.4 Basic Ads Types

skuden Now*:

DISCRETE INTEGER

o FORM
type IDENTIFIER is range LOWER-BOUND .. UPPERBOUND;

o EXAMPLE

MIN AGE: constnt :- 0;
MAX'_AGE: constant :- 150; 8-13

tye AGETYPE is rngoe MINAGE.. MAXAGE;

SET OF VALUES:
(0, 1, 2. ... 150)

with TEXT10;

procedure AVERAGE-NUMBERS is

NUMBERTOGET: constant:- 5;

MAXIMUM NUMBERS: onstant :- 10:
* type NUMBERS ,i range 0.. MAXIMUMNUMBERS NUMBER.TO GET:

subtype INPUT-NUMBERS Is NUMBERS range 0.. MAXIMUM NUMBERS;

type NUMBER-COUNT is range 0.. NUMBERTOGET;

B-14
A NUMBER : INPUT NUMBERS :, 0;
TOTAL : NUMBERS 0:;
HOW MANYNUMBERS : NUMBER-COUNT :- 0.

package NUMBERIO is new TEXT 1O.INTEGER.IO(NUMBERS);

packaeCOUNTIO is i IwTEXTO.INTEGERIO NUMBER COUNT);

begin

TEXTJ OPUT .iow many numbers do You have .>):
COUNT IO.GET (HOW MANY NUMBERS):"or TDTAL LOOP in 1..HOW N"ANY NUMBERS loop

TEXT COM.PUT("N:mbs- 5;
NUMIEO.BET(ANUMBER);
"TOTAL :- TOTAL + ANUMBER;

OW loop;
TEXTJO.PUTr(otal of lumbers is ");
NUMBER IO.PUT(TOTAL):
TEXTIO. NEW UNE(2):
TEXT IO.PUT(NThe average of the numbers is*);
NUMIER.IO. PUT(TOTAL /NUMBERS(HOWMANY.NUMBERS));

end AVERAGE-NUMBERS;

Basic Ada Typos 2-5

Student Notes:

DISCRETE ENUMERATED

0 Enable direct representation of non-integer values
8.15 e Example, securty c•ass

UNCLASSIFIED, CONFIDENTIAL, SECRET, TOP SECRET

type SECURITY TYPE Is (UNCLASSIFIED. CONFIDENTIAL. "
SECRET. TOPJECRET);

procedure CONTROL ACCESS is -
type SEGURITVYPE is (UNCLASSIFIED. eONFIDENTIAL, SECRET,
TOP-SECRET);

procedure GET CLASS. SECURITY LEVEt out SECURITY TYPE) is
""eparate;
procedure ENABLE-CONFIDENTIAL ACCESS is separate.
procedure ENABLE SECRET ACCESS is separate;.
procedure ENABLE.TOPSECRET ACCESS is separate:

SECURITY CLASS, SECURITY-TYPE = SECURITY TYPEFIRST; @

bgin

8-16 GET-CLASS(SECURITYCLASS);

if SECURITY-CLASS -. TOP SECRET then

ENABLE TOP SECRET ACCESS:
ENABLE SECRET ACCESS;
ENABLE CONFIDENTIAL ACCESS:

slut SECURITY-CLASS - SECRET then

ENABLE. SECRET ACCESS:
ENABLE CONFIDENTIAL ACCESS;

6151f SECURITY-CLASS - CONFIDENTIAL then

ENABLECONFIDENTIAL ACCESS:

ind if;

end CONTROLACCESS;

2-6 BasIc Ada Types

Student Note":

C.
REAL

0 Provide approxirmitions for real numbers B-17

o Two ways of handlin eror bounds

S, Roting Foint- rmlvef Wr bound

so Fixed Polint--bSlote ormer bound

* Sate Numbs'rs oie-n-1CM

FLOATING POINT TYPES

a Error bound betww number is expressed as redi to the1
position of the number over the entire rangs of values B-18

* Acmuracy Is specified in terms of the number of significant digits
required

FLOAtDNG POINT TYPES

* Fprrl B-19

type TYPENAME is digits 10 1 range 0.0 .. 100.01;

type REAL is digits 15 range -100.0 .. 100.0.

i A20

Basic Acts Types 2-7

Student Notes:

with TEXT 10:
procedure AVERAGE-NUMBERS is

NUMBER TO GET 'constant - 5;

MAXIMUM NUMBERS constant:- 10.0,
type NUMBERS is digits 10 range 0.0..

MAXIMUM NUMBERS * NUMBERTOGET:

ut"ype INPUT-NUMBERS Is NUMBERS range 0.0..
MAXIMUM-NUMBERS;

B-20
type NUMBER-COUNT is range 0.. NUMBER TOGET;

A NUMBER : INPUT NUMBERS .. 0.0;
TOTAL NUMBERS 0 0
HOW.MANY NUMBERS NUMBER COUNT , 0.

package NUMBER_ 10 is new TEXT 0, FLOAT I04 NUMBERS);

package COUNTJO is new TEXT- O.INTEGERtO(NUMBER COUNT !,

begin

TEXT IO.PUT('How many numbers do you have ."
COUNT IO.GET (HOW MANY NUMBERS);
for TOTAL-LOOP in I1.. HOW-MANYNUMBERS loop

TEXT IOPUT(*Numb~er -> "); ,•

NUMBERIO.GET(A NUMBER):
TOTAL:,- TOTAL - ANUMBER;

sod loop:
TEXT IO.PUT("Total of numbers is "):
NUMBER 10 PUT(TOTAL).
TEXT JO. 1NEW LINE(2),
TEXT IO.PUT("The average of the numbers is").
NUMBERIO.PUT(TOTAL / NUMBERS(HOWMANYNUMBERS)),

end AVERAGENUMBERS.

FIXED POINT TYPES

e Error bound between numbers is expressed i s a fixed value
-21 between arty two numbers

* Accuracy is specified in terms of the delta (change) required

2.8 Basic Ads Types

FIXED PONIY TYPES Sdn o,

r*1 * Form
type TYPE-NAME is delta 1 .0/8 range 0.0C.. 1000.0;02

typ FIXED-TYPE is delta 1 .0/1 d range 0.0. 1000.0;

with TEXT 10:
procedure AVERAGE-NUM8ErtS is

NUMBER TO GET : constant - 5:

MAXIMUM-NUMBERS: constant : 10.0;

EIGHTS: constant:- 1.018; 8-23

type NUMBERS is deItaEIGHTHS range 0.0..
M/4XIMUM NUMBERS I NUMBER TO GET:

subtype INPVTýNUMBERS is NUMBERS range 0.0., IAAXIMUM NUMBERS;
typ NUMBER-COUNT is rnge 0.. NUMBER_0ET

A NUMBER :IWPUJT NUMBERS :-0.0:
TOTAL :NUMBEAS .u0.0;

HOW MANY NUMBEflS :NUMBER COUNT :=0:

package NUMBER 10 is
new TEXT lOPFIXEDIO(NUMBERS);

package COUiT 10 is
new TEXT IO.INTEGER lO(NUMi3ERCOUN T).

TEXT IO.PUT(liaw many numbmsdo you have ->');
- . COUNT IO.GET (H)WMANY.NUM6ERS):

for TOTAL LOOF in I .. HOW MAWY NUMBERS hop
TEX 16.PUTldmbirw -> 5
09UMiFR ' 10SETf, NUQ*BER).
TOTAL -. TOTAL + A NUMBER;.

"en loop:
TEXT 10. PUI(1ctiAl of numbers
NUMER IO.PUT(TOTAL):,
TEXT 1O.NiEW LINE(2);
TEXT IO.PUT,,Vý6hI average of the rumbflrs is"):
NUMBER1 1O.PUT
(NUMBEfRS(TOTAL /NUMBERS(HOW MANY NUMBERSj)):,

end AVERAGE NUMBERS;

Basic Ads Types 2-9

Student 1401.:

COMPOSITE TYPES

0-24 * ob"et may contain multiple values
e Two kinds

00 An"ay - values have same type
so Records - values may have different types

ARRAYS

e In declaration must specify
0. The type of the *oMPOnUnt
00 The type of wno dex

e Form
8-25

NUMBER-Of TILES: considrt: - 7.
tyM TILENUMBER izi rangpe I .. UMBER-OF..TILES;
type LETTER is (A,B.CO.E.P,GHI,JK.LM.N.O.

PC.O. RS.T,U ,VW,W.X.Y.Z.BLANK):
type RACK is aira '.TLE V'!USER) of LETTER;

MY-RACK: RACK: - (A.J.BBLANK.K.S,S);

1 2 3 4 5 6 7
F A J BLAMnk I

ARRAY INDEXING

*To rdeftwce a puullculm owponent of an a&Ma mutt specify wide

8-6MY-RACK (3) :~BLANK;

MY-RACK (6. 7) - (A.B);

MY RAGK (4) aMY-RACK (6i).

2-0 baic Ads Type's
S o l)

Student Notes:
package SAMPLER is

BANDWIDTH: constant:- 100:
type FREQUENCIES Is range -BANDWIDTH. BANDWIDTH;

MAX MAGNITUDE: constant:- 10; B-27
type MAGNITUDE is range 0 .. MAX-MAGNITuDE;

type SPECTRUM is array(FREQUENCIES) *I MAGNITUDE:

fwKclof HIGH FREQUENCY

(A SPECTRU]M :SPECTIRUL)~m rsu~FREQUENCIES;

enA SAMPLER;

package body SNAPLER Is

function HIGH FREQUENCY (ASPECTRUM :SPECTRUM) return FREQUENCIES is

HIGH MAGNITUDE: MAGNITUDE :- MAGNITUDE'FIRST;
HIGHESTjFREOUENCY: FREQUENCIES :- A.SPECTRUWFIRST; B-28

begin

tar FREQUENCY In ASPECTRUM'RAt4GE loop

IN HIGH MAGNITUDE < A$SPECTRUM(FREOUENCY) then
HIGH MAGNITUDE :- k SPECTRUM(FREQUENCY);
HIGHEST -FREQUENCY:- ;FREQUENCY.

end loop;

return HIGHEST-FREQUENCY;

end HIGH-FREQUIEHCY;

end SAMPLFR;

UNCONSTRAINED ARRAYS

a Give the ability to declare varyin SIMe oboecta ron ghe same array
type declaration.

tyne STING is array (POSITVE rofec) ~ CHARACTER:-2

MAX TEXT LINE : contant. - 80;
subtyps TEXT 6s MTING (I1. MAX TEXT LINE);
SMdAL421EXTSIZE: cerntent :- 10,
subtype SHORT-TEXT is STRING (11 .. SMALL TEXT SIZE):
SHORT LINE :SHORT,.TEXT;
LONGL1INE :TEXT:
LINE-: STRING (10 12);

Seslo Aft Types 2-11

Student Notes:
package SAMPLER is

SAND WIDOTH :constant "100,

SMALL: constant : - 10:
MEDIUM : constant: - 50;
typ FREOUENCIES is range -BANDWIDTH BANDWIDTH:
MAX MAGNITUDE -constant. 10 '

B-30 type MýAGNITUDE is range 0. MAX-MAGNITUDE:
type SPECTRUM Is array(FREQUENCIES range < > of MAGNITUDE;
subtyp SMALL SPECTRUM is SPECTRUMw(-SMALL.. SMALL),
subtpeMEDIUM SPECTRUM is SPECTRUM(-MEDIUM.. MEDIUM).
subtype FULLSPECTRUM is SPECTRUM(-IANDWIDTH. .SANDWIDtH);

function HIGH FREQUENCY
(ASPECTRUM : SPECTRUM) return FREQUENCIES:

end SAMPLER:.-

with SAMPLER:
procedure FIND-HIGHEST is

SHORT RANGE : SAMPLER.SMALL SPECTRUM *(others a) 5)
FULL RfANGE -SAMPLER.FULL SPECTRUM '- others -) 1).
HIGHIEST SAMPLER. FREOU&WCIES :-SAMPLER. FREQUENCIESTFIRST:

8-31 SHORT HIGH: SAMPLER. FREQUENCIES :-SAMPtER.FRECUENCIES'FIRSI,
FULL HIGH : SAMPLER. FREQUENCIES:U SAMPL.ER.FREQUENCIES'FIRST,

begin
SHORT HIGH - SAMPLER.HIGH FREQUENCY(SHORT _RANGE)W
FULL HIGH -SAPAPLER.HIGHJREOUIENCY(FULL RIANGE),

It HIGHEST SHORT-HIGH then
HIGHEST SHORT HIGH.

end it;
if HIGHEST FULL-HIGH then
HIGHEST FULL HIGH

end Wt:
end FIND HIGHEST,

MULTI DIMENSIONAL ARRAYS

package GAME PIECES is

NUMBER OF TILES, constant : - 7,
8-32 tipe TILE-NUMBER is range 1 .. NUMBER-OF TILES;

NUM BER OF SQUARES : constant : - 15,
type SQUARES is range 1I.. NUMBEROF- SQUARES.
type TILES Is (A, B. C. 0. E. F. G. H, 1. J. K.,LLMK N, 0, P. 0. R, S. T.

U. V. W. X. Y. Z , BLANK, EMPTY)I
type RACK is array (TILE NUMBER) of TILES,
type BOARD is array (SQUARES, SQUARES) of TILES.

end SAME PIECES;
2-12 Basic Ads Types

student Notes:

package FORMAT is

procedure ADD DOLLAR-SIGN (ASTRING : In out STRING); 0-33
find FORMAT,

:$~aebody rOR4A -* -

p---.i.- __0..PLL

DOLIAPI- CHARACTERf-'5'; -

begin

A STRING(A STRING-FIRST+1 .A STRING*LAST) :-
'ASTRING(!A STRING'FIRST .A ftRINGi.AST.1)

ASlTRING(kA SRING'FIRST) :- DYOLLAR;

0and ADDDOLLAW..SIGN;

end FORMAT;

wit FORMAT. TEXT-10;

procedure FORMAT-NUMBER is

MAX LENGTH: ontant :- 80O;
subtype NUMBER STRING is STRING(1..MAX LENGTH);
A NUMBERSTRING: NUMBER STRING:- (ofters . >;

LENGTH: NATURAL:- 0: B-35

boon

TEXT IO.GET LINE(A NUMBER WTRING, LENGTH):
FORMlAT.ADO DOLLAI SIGN (A NUMBERSTING(1.lAENGTH+ 1));
TEXT IO.PUT(ANUMdBE'RSTlRIG);,

.* end FORMAT-NUMBER;

8081C Aft Typo* 2.13

Student Notes:

RECORDS

"* Components may have different types

"* Form

NUMBER OF DAYS IN MONTH: constant:= 31;
. type DAY-TYPE is range 1 .. NUMBEROFDAYS INMONTH,

type MONTH TYPE is (JAN, FEB, MAR, APR, MAY, JUN, JUL,
AUG, SEP, OCT, NOV. DEC);

LAST DAY ONEARTH: constant - 2085:
type YEARTYPE is range 1 .. LASTDAYONEARTH:

type DATE is record
DAY :DAY TYPE.
MONTH MONTH TYPE:
YEAR :YEAR TYPE;

end record.

* Components are referenced using "dot notation"

TODAY
B.37

3 TODAY.DAY

JUN TODAY.MONTH ~

1987 TODAY.YEAR

TODAY: DATE:
TOMORROW:DATE:

-YESTERDAY: DATE:

begin

TODAY. DAY:- 3;
TODAY.MONTH:- JUN;

B-38 TODAY.YEAR:, 1987;

YESTERDAYDAY :- TODAY.DAY -1;
YESTERDAY.MONTH :- TODAY.MONTH:
YESTERDAY.YEAR :- TODAY.YEAR;

TOMORROW - TODAY;

TOMORROW.DAY :- TOIK'JRROW.DAY 4 1:

TODAY:- (4, JIJN, 1987);

2-14 Basic Ads Types

Student Notes:

OTHER RECORD FORMS

5-39
9 Discriminated

0 Variant

OTHER ADA TYPES

9 Access Types
e*Equhralent to dynamic variables in other languages B-40

m Used to dynamically allocatedeallocalt storage &t run time

9 Task Types - Designate tasks

* Private Types - Abstract data types

fasic Ads Types 2-15

Student hote":

CONTROL STRUCTURES

* e Struturd Progruiing

e Conditional
bmltestv

STRUCTURED PROGRAMMING

* A metliodologkWa styt tor constructin piorams by coMnecing

1,.0*Three difernt cotrol structures are uf ticient for writing any logicC-
(mom~acopini -64)

00sequenc k ucutebl iateumnts
S. Decision ciauu (Ht then else)

soIteration construct (While or until)

~C--

Cont~rol Structures 3-1

Student Notes:

BENEFITS

* Understandability

a Modifiability
* Reliability

SEQUENTIAL ST ATEMENTS --

C-5 * /Vlignment :,

e Null null;

• Block Statement

BLOCK STATEMENT

0 Localizes dctlarations andlor effScts

* Form

declare
C-6 - I- loca deildarative ptt - OPTIONAL

-3- ClttamStcr

end;

4

3.2 Contr .ol Strcture

Student Names:

with TEXT 10;
procedure FILL u LST 0~

MAX NUMBER: conlant :- 1O00.
type NdUMBERS Is range1..I MAX NUMBER;
package UMBERIO I newwTEXTJO0.INTESERIO(NUMBERS);
LIST SIZE: nshtm:- 1000;

typ tST INOE TYPE Is" Iag .. USLSIZE;
package INDEX1 i~ s new TEXT IO.INTE6ER__(L1STINDEX17YPE):

typ LISTYPE Isarray(U1ST_1NDikTYPE range <>)of NUMBERS. C-7
LOWER BOUND.-.

-UPPER BON:UST -INDOXT". :ýIST IO*V 7RT
.. - . . _ - . - :.E -YP~ R T

1NDEX(,IO.Ift(LOwER,,BO1JNO3'.-~
INDEj.G(~UN);-

declare
LIST OF NUMBERS: LfST-*.VYPE(LOWER BOUN1D. UPPER-BOUND)

begin
for LIST ITEM In LIST0OFNUMBERS'RANGE loop

NUMBels O.GET(LISTOFNUMBERS(LISiTJITEM));
eNd loop,
far LISTJITEM In LIST OF NUMBERSRAANGE lomp(0NumB-ER_ý-.puT(L!ST...ONUMBERS(LISTJITEM)):

end; -black statment

enid FILL-LIST.

Coriwrol Structures 3-3

Student Notes:

with TEXT 10;
procedure FILL.LIST Is o r)

MAX NUMBER: constant: - 100;
type FiUMBERS Is range .. MAX NUMBER,
package NUMBER-1O is new TEXf IO.INTEGER IO(NUMBERS):

LIST SIZE constant : 1000:
typeLISTINDEX TYPE is range 1 .. LISTSIZE,
package INDEXI5 is new TEXT_IO.INTEGER.IO(LISTINDEXJTYPE);

We LIST.TYPE is aofty(USTIN)DEX.YPE r <>) of NUMBERS;

LOWER BOUND,
UPPER.)OUND: -USTINDEXTYPE: - LISTINDEXTYPE'FIRST;

begin
loop
begin
INDEX IO.GET(LOWER BOUND);
INDEX _O.GET(UPPER.BOUND);

C-8 exit;
$1tcption
when others - > TEXTIOPUT.LINE(mIIegal bounds, try again);

end;

end loop;

LIST*OF NUMBERS: LISTTYPE(LOWER BOUND., UPPER)BOUN 4

begin
for LIST ITEM in LIST OF NUMBERSRANGE loop

NUMBEFRO .GET(LIST..OFNUMBERS(LISTITEM) ,.

and loop;

for LIST ITEM in LIST OF NUMBERS'RANGE loop
NUMBER_IO. PUT(LIST OF NUMBERS(LISTITEM)):

end loop:

end; --block statement
end FILL-LIST;

3*4 Control Structures

Student Notes:

CONDITIONAL
•'O C-9

9 Chanpe control flow based on the value of an e•opreslon

0 If statement
* Case statiment

IF STATEMENT

F H CONDITION then C-10

end If;

T
If ITEM4 gLIST (CHECK) then

TEMP M ITEM:
ITEM - LIST ICHECK);
OUST (CHECK) T'EMP;

.. ond If;

IF - THEN - ELSE

of CONDITION tita

end N;

* ITEM , LST (CHBCK) hm' C-11

LST (CHECK): L , TRW*.

CHECK: a CHECK + I.,
FOUND :a FALSE;

n*d If;

Control Structures 3-5

Student Not:c

IF - THEN - ELSIF - THEN

if CONDITION then
. ealomogrle

C-1 tW CONDITION thalr

v wmESA a LOW..PMRITITY tWo
GELPRSORMITYJXLAO ILOW);
rOUTLLOWIESAOE;

Nom IMESSAGE a NHIGALMIORITY tOwn
ROUTLMMrINISAGE.

oMeMENTNGK.COUNT

FULL IF STATEMENT

C*~I 3 iCONDITON tienn

.4biCONDITON Ow

and If;

CASE STATEMENT

cow LUhCRIET.ExpNEsUON is
wfta VAULUE.a> 0 * uMftwmmtS
wfui VALIM..2 a> - - sinmelI

C-14 _

*Altemeativo twat be amotusY
eacnseive and exheustibm

34 Control StmiuWres

Student Notes:

CASE STATEMENT

GETSCOLDR (USER-COLOR);

am USER-COLOR Is

when RED - INCREMENT COUNT (PRIMARY.COLOR);
NUMBERRECEIVED :, NUMBERRECEIVED +1:

when BLUE -> INCREMENTCOUNT (PRIMAnYCOLOR);
NUMBER-RECEIVED :- NUMBERRECEIVEC +1;

when YELLOW-> INCREMENTCOUNT (PRIMARY COLOR);
NUMBER-RECEIVED :, NUMBER-RECEIVED +1:

when others ,, INCREMENTCOUNT (SECONDARYCOLOR);

end case;

case USER-COLOR is

S whin RED IBLUE IYELLOW -> C-16
r" INCREMEKT-COUNT (PRIMARY-COLOR);

NUMBER_RECEIVED :- NUMBERkRECEIVED + 1:

when others - > INCREMENT-COUNT (SECONDARY-COLOR):

end case:

ITERATIVE STATEMENT

Smmai is p1"eomfd ruing Ad " WOW am her C

"Umww" for mk khma oe n C-!7

uABIC LOOP

. sawemeata SAMPL.LLINE;

j Wd NWop; tDATF.TOTALS;

Coi.,rol Structures 3-7

stufsnt Woe,:

EXIT STATEMENTS

* im I it , w NO-,t smlsaing k"
m May hove muatplpe SOu slatetwints

C'-1-

I. • e al SAMPPULLLN:
sau Iwte jwCEDITION1i UPDAT.XOTALS;I"~Oa • wol~ e m 1011ý10,

w..asGwum belit wuw 1"IPED

WHILE LOQP

* edd Ita,* e

L,.!9 wh b .. NOEI!(Iee
- Tm eat"Wla .map

fwhiet FOUIND we.
SUAKRCH.I.T TIM, liST, POUMO);

POR LOOP

* Oeflnta itertlon

ior LOOP-PARAMETER in DCSCRETE.NRGE loop

C-20~~~o IVC nC "w

c.2o • co~M m 10m CdLOm.•' •
OOO•I IO.PUT'(COLOR);
INEXT~b.IONE*-*NE;

for INDEX in LIST' RANCE loop
, TOTAL - TOTAL + LIlT (INDEX);
ot loow;

34 Contlrol structures

Student Not1mes

(0O SUBPROGRAMS

* Modularity S-

* AbNtracfion .

. Intrrma*tnHidimg

FORMS

" -. .- ..- -. --. - • . r-.

* , P-ocedure - -.-. - -
- , -. Abatrat.; jn. " -" -' . ."

"..,. S-2
- Invoked by I procedure ca-"

9 Functions

- Returns a single value

- An expression

PROCEDURE PARTS

Procedures ae divided into Iwo 1m:

"* Specufiation

- Defines Interfaces

" Body

- Deftrs implemenolation detaIs -3

Subpro~rams 44

SPEC151CATIONS - DECLARATIO14S

9Usad In packges and lof ~t yQvsblt ihebde

S.4 Wrooem MASSIVE RETAUATION: Procedure
procedure ENABLE_(CM. Diclarmtions

procedure ANSWERPHONFf is - specificution pan of procedure

wmw fmention @etui~s

endl ANSWER.PHONE,

PROCEDURE BODIES

e PrW~uqt bodies am further WrOWe Omn Into two pails
0 OeCW1111t1vg Pant

- Dleclre items ocal to tht procedure
.S-5- Seien oir owd begin"

* Executable Parn
- Con~sinh executable statemrents
- Following'begin* and through *end"

PROCEDURES

procedure STUFF-1T is
N owar is"m SW~f -Clewe PIar

do isoie sbA -EncutWl hnr

end STUFFJT;

4-2 SUbprograms,

student Not":

PARAMETERLESS PROCEDURES

* No inlormation passed to or from the procedure

* All intormation used is purely local

with TEXTSI0;
procedure DISPLAY-MENU is S-7

begin
TEXT IO.PUT(11I ENTER AN MAI);
TEXT-0.NEW LINE:
TEXT IOPUT(ý121 RETRIEVE AN ITEM');
TEXT IO.NEWLINE;
TEXT 1O.PUT('j3J CLEAR ALL ITEM*);
TElT-IO.NEW LINE:

end DISPLAY MENU;

PROCEDURE CALLS

* Invokes execution of corresponding procedure

* ..O Passes control to call pmcedure

9 Control passed back upon Cmpltion of exemon

with TEXT 10;
with DISPLAY MENU;
procedure PROCESS ITEM is

MAX OPTIONS : constant :- 3;
type OPTIONS is range 1.. MAX-OPTIONS:
CHOICE: OPTIONS:
package CHOICEJO is new TEXTD0.INTEGERIO(OPTIONS): S-8

begin
DISPLAY MENU; - Control passed to DISPLAY.MENU
CHOICE FO.GET (CHOICE);
case CHOICE is

when I -1

when 2

wtfl 3-> -

end case;
end PROCESS-ITEM;

Subprograma 4-3

Student Notes:

PARAMETERS

"* A way to pass information to and from proceoures

S.9 * Enforces S.F. principle of loca"iaution
"* Two kinds of subprogram parameters

- FORMAL

- ACTUAL

FORMAL PARAMETERS

* Defined In procedure specification

S-10 e Deflnes object names and types to be used locally In procedure

procedure MASSIVE-RETALIATION (CODE: in STRING),

ACTUAL PARAMETERS

"* Declared in ca1llg program unit
"e Types of actual and formal parameters must be compatfie

with MASSIVE RETALIATION.

procedure RESPONSE is
MAX EC• LEVEL : wonslnt: - 5:
type [CMLEVELTYPE is range 1..MAX ECM LEVEL.

5-11 MY CODE : constant STRING :- iLASTEM'"
MY LEVEL: ECM LEVEL TYPE :- 3:
procedure ENABLE ECM (TEVEL: In ECM LEVELTYPE) is separate:

begin I

MASSIVERETAUATION (MYCODE);

ENABLE ECM (MYLEVEL):

end RESPONSE;

4-4 Su nro rimm

Studi~t Notes:

riePARAME'FEf MOMES

a Procedure tormal praflsters hav tiwee afttable modes
- in-actual parameters send Wcnfmation Ic Ut czagl

procedure Omtreted a constant)
- out-scbii taritmters wiek kIfariuston ftomt the calied

proadurs (cmn onlybe updated)
- in Mu-4dIua pmasiites sand and rmý- kdormaltkm %rm

tM t~led procedure f(Vested as obiru)
- If no modo isMsd n I arlpan. #= Wi's md 4s

the default

S-12

with TEXTJO;-
proceduure PUT NGET is
MAX INT : constanit:- 100;
type MiYJINT is range I1. MAX INT;
package INT-10 is new TEXT-O INTEGERIO(MYJINT),
INT_, INT-2 : MYJINT -MYJINT FIRST;

*procedure EXCHANGE (FIRST. SECOND: In out MY INT i s
TEMP: MYJNT :- FIRST;

begin
FIRST :w SECOND;
SECOND : TEMP;

enud EXCHANGE;
begin
INT -IO.GET(INT1);
INT 0O.GET(INf 2);
EXCHANGE (INTI, INT-2)
INTJO. PtT(INT 1):
INT-IO.PUT(INT 2);

end PUTý~N GET:

Subprograms 4-5

Student Notes:

FUNCTIONS *1h

SDiffterent than procedutes

- Return a single vaPAie

- Must have a return statement (optionial with procedures)

S-13
- Called as an exprslon
- Only hs .ir modes

SSoame as procedures

- Has e specification ast2 a body-

- Enforces S.E. principles - -

STRUCTURE

"* SpecificationO

- Defines interftces

tuncti)n ENDOFFILE return BOOLEAN:

"* Body

- Implementation details

- Must have a return statement
S-14

function ENDOF FILE return BOOLEAN is

begin

it then

ratum TRUE;
else

return FALSE:
end if:

end ENO) OF-FILE:

4-6 Subprograms

Student Notes:

PARAMETERLISS FUNCTIONS

op Al' information needed is lotai ft ttl*t function
S-15

ticilon KCSTILE ufun BOOLEAN;

function WEAPON ARMED return BOOLEAN:

bnction NUMFRtOGEY6S rft a ti0E.COUNT.

- FUNCTION CALLS

' . -- -' - .a• " . ,alred. as'an "0~ t l - _-.": ." .•"•..-..?_• ,•..-

. . -, • * q .,,l. .. r.

* . S. B
S" S-16

BOGE.Y :- NUMBER BOGEYS;
It HOSTILE then
if WEAPON ARMED then

FIRE WEAPON;
end if:

and

FUNCTION PARAMETERS

A Can only be of mode win"

AMRAAM: WEAPOW TYPE;
CLOSEST IOGEY : BOC-EY TYPE, S-7
hunction HOSTILE (BOGEY : BOGEY TYPE) return BOOLEAN is separate:
tuncfi~n WEVAPN ARMED
(WEAPON :in W•E•PONTYPE) reum BOOLEAN is separate:

begin

-" Hi HOSTILE (CLOEST QEY) Ow
It WEAPO' ARMED (AMRAAM) O1e
FIRE-WEAPON (AMP.MAM);

end If:
end it;

Subprogramn 4-7

Student Notes:

PACKAGES

* Altow the specificat~on ol groups of legicafly related 9ftities

* Simple form--Mectlon of daa decdaiaens.1

a General form-.gjups of rdela antles ichudh subrograms
which can be cd from ou*a ide the Pacage while Ner details
remain concealed and protteod

Sa2= P-2

-

,,

STRUCTURING TOOL

"* Package; allow us to partidon up the solution space into logically P-3
distinct. sol-continned components

"* A different structuring capabilty from the traditional use of rosting
and i•dependent compilation

"* Diflerent topology

Peckagen 5-1

Student 30iotse

11A3MONAL LANGUABE TOPOLOGY
inmu i owu

P-4 M kA

rlADIMONAL LANGUAGE TOPOLOGY

P.S

A TO

P-6

5.2 Packages

(7~ UU * a M* ECL ST WM 3AG1UMA

low ___4

o* a ma"nuawmi uraus - ma .mn ushmms

Pakp 6-

PACKAGE STRUCTURE

P-04 Hisabl p"i - Pukage Boc~~to,

- 6Umwtm Opuonal

PACiCAE PECIFICATIOI4

MAATRXSIE 10

.atig MATRIL.PACKS E m"<75 o EL

BRAWS.MATAIL.SIZET I..wn on I10,0)

WONe MATRD (MM.X SYECOND:p MAXR~M emMATRIX-TZE,

IWeMSBW(IRT EOD MATRIX-TEMNT'YPE) f array MATRIX-NETYPE rng

" iaMULTIPL (FIPST, SECOND: MATRU-TYPE) return MATRIIXYPE.

54 p~k"a W MATRIL.PACIIAGE,

we MATRM2LPACKAGE.Urnow iMA

MY mAiUx mAThCLPAcxAGE.MATRUlXTYPE(3):
yOURMATRIx mATRMLPAMM.AGEWTRDLTYPE(3).
ANGTHER-AATRIX: MATRUL.PVcKW..MATRUL7YPE(3).

owg P-13
YOURJAYRA~IX.ELWENTS -(u osra>20)
ANOTh..MA7WhIX.ELWEUT:-(,wp >(SIS->40)

* MY..M !h* a A1RLpAC.(AaE.ADO (YOULMATRIX, ANOTHERLUMAI).

AiOTHULMAYRIX *MATRULPACKAGE.MULTIPLY C MY..MTRIX. MY.MATPIX)

PACKAGE BODY

*It nusdsd coenam P-14

- Bad"ssof wo dK.,vso@in I* dSII

- An" oftr deciffiUaM "1181011 (uMM aM r l W.461 m O)

Pmpm 1

"*m~Age boil MATRIX-PACM(AE A

hoscomw AGO (FIRST. SECCND IAATRIX-TYIPE)eturn MATRILTYPE ts
TMPWP.TRIX: MA1RIL-TIMIFIRST, SIZE),

ImNIELI IRSTAELEIENTS'RAVI~ihtIlop
for RODELm FOR91AI.IEMWffTANUM(1 6M

TEWP... IAT~X LEMEN1IVINE1W. ~OUX2)
PMIUS.LMENTSIONDE)LI, INDEX.2)
SECOND.EIUMENTSIINOEX.I. WiWL.2).

P-15
boflfts STACTW (WA~. SECOW MATROL-TYE) mOw MATAILIMi is

INMP.MATftW MATMPLYMOInRT.g8a),

Ow INDEXLI a FIRST ILEMENd7SRANQE1l) IMo
Nor onDE WA FRST JLEMNTSftROO((?) Imp
TlMP.MATRIX-fUhNTSIOEL.. 0DEX.21

F=RT ELIEMNTSWINOEKI WDEL..2).
$kCOND ELEMEWSNUS(I.t(WD01L2).

ow loop.
mom iim MATRIX.

VA SPARACT.

katom IIULTWLY (FIRIV. SECOND MATRUL-TYPI testu" NATULTYPE is

TIEMPMATIX MATRIL1YPE(ARS Sol,)
Um AmM -00. @

tv WDIUUl FIRST REMETMINANElo) wop

ow MotuiL a FIRST ELEMMIWTSRIE imo
SUM -sUMI

FIRST ELEMPENTSMINOLI. fIDEIS
SECObD ELENIENTSIUIOEX.3 DEJ.2).

YEW MATRIX ELM~NMh4OhJ 1. INEJL) - SUW

owimo.
law TWPwTvx.

H Ifekage @

SM NoWs:

PRIVATE TYPES

P-16
"* Mow ft idnI on ot pwwoi M*W doac "ai pe

"* Dsie nftnsdP*M Wi of t OWP MiMWOn

FORMS

- P-17

-r~ eift sup*ug -a~ pdin~g pop *NWd

WAAAM ScULUSift

%KLIim eU

puag U5b.1.

student Nftss:

pomip "od BASKIN -OBBINS

NUMISAJIOLDER NUMBERS..- NU'M02RS IFlAST.

prsmdsm GELNUMIIEARý NEXI-.NUMBER -ouit NUMBERS) it

NEX(T.NUMeER - NUMBER-H)OLDER,
P- 19 NLJMBERAOLOER. IUMSERLNOLOER , 1,

m0d GELNIJWER.

kmcbon14 NWJERVING rmom' NUMBERS as usprate

proookS SERIVE (A.NUMR: in IMASERS) as japruto,

salk SASkILNOSS1INS. vur SASICN ROBBINS.
procidur CE..CREAM is

YOIRJLNMSER: SASXIN..ROSINS.NUUDERS

&WSINJOSSINS GEL-NUUSE(YOUMJEUMSEFI)

P-20 MOP

ASIWROS~iSSEAE(YOUN.JoUMSER).

owd d.

-m ICE-.CREAM,

wft SAICIIN..A0OSSNS,

YOU..UMUR SASICN.ROSSNINS, NUMBERS.

a YOURMER- NOW SEALMSER I

P-21I SSULROUS -EW Now. NUNOEa a

YoUR.J4UMSER:- VOJLWLUMIER 1.
W4 d.1

W4 is".

StUdeft Notn:

lyp PUNSRSis pmb;

p owd-ur- BEJUMSRJ NEXTJUMSER; W NUMBERS). P-26
* ~ hmeb WOWJERVUI van NUMUKRS;

m &muu UMVE(A.JOAM : imNUMIEMS:

MAXIUAMIE a~bi:- 100:
type NUMBERS k romp 0. MAXLNUMER:

pisudum ILMACM is

SSKMiJOUIMS.GTJUMER(YOURJIUMER): P2

0 OURJUR :- SAW-30LMUSIS.OWeRV

RisS. 4

Pac~ae &05

Student Notes:

package BASKIN-ROBBINS is

type NUMBERS is limited private.

procedure GET.NUMBER(NEXT-NUMBER out NUMBERS)
function NOW-SERVING return NUMBERS.
functon ISEOUAL (LEFT, RIGHT: NUMBERS) return BOOLEAN:
procedure SERVE (A-NUMBER : in NUMBERS);

MAJLNUMBER : constant : - 100:
"tYpe NUMBERS is "ane 0.. MAXNUMBER:

P-24 end BASKIN.ROBBINS,

with BASKIN-ROBBINS:

piocedure ICE. CREAM is

YOUR-NUMBER BASKIN ROBBINS NUMBERS.

pocdure GOTO DO is weparale.

begin

MSKINROBBINS.GET.NUMBER(YOURNUMBER);

loop

d BASKIN.ROBBINS IS.-EOUAL(YOURNUMBER
BASKIN ROBBINS NOW.SERVING) then

MSKIN..ROBSINS SERVE(YOURNUMBER).
eM.

P-25

GOTO DO.

omt.

51 .

5-10 Packages

Student Notes:

APPLICATIONS OF PACKAGES

"* Named colections of entities P-26
"* Groups of related subprograms
"* Encapsulated data types

NAMED COLLECTION OF ENTITIES

package METRIC.CONVERSIONS is

CAPER..INCIJ : constant :a 2.54; P-27
CMPER.FOOT: cwstant :, 12CMPERINCH:
CMPERYARD constant :- 3CMPERFOOT;
KM.JER.MILE :constant :- 1.609_344:

end METRIC.CONVERSIONS:

GROUPS OF RELATED SUBPROGRAMS

"* VisbWe declarations of axtamWIy uSNe subprograms P-28
"* HIdden implementation/shanrd hiternal mntitim

ENCAPSULATED DATA TYMS

P.29
A * flw abutiu dabtaona
0 PrtlnWIiqtud mWate "as

(O"
pwack" 6-11

Students Motes:

EXCEPTIONS

E- 1

0 Purpose
* Decluft Eiptomo
* Exceplion Handlerl
0 PAW •Luplons

9 Propagatlon

RELIABILITY

e A •c0u *m t Otf MW mybisonccsYSIM E-2
* A tndM" ha olml am
e Lte andr pme depsnd on sftwars

ERRORS HAVE OCCURRED. 00 OCCUR, AND
WILL CONTINUE TO OCCUR!

WO HAuNsL LBVUAS

w*(9 NoeE-3

(u@0
Exosptons -I,,

Btudent Notes:

UNDERSTANDABILITY

* Much of the cc.le writteivread deals with abnormal circumstances.E-4 * To grasp tme meaning of a section of code, a maintenance
programmer must sort through the abnormal to find the main
meaning.

* TtdAiionml laiguages l"ck the ability to deal with normal and
abnormal as distinct fatures,

DEFINITION

"* An "exception" is the name attached to a particular exceptional
situation, user-defined or ptWined.

E-5 * When the particu:ar situation occurs. the exception is said to be
"raisad.

"* The response to the raised exception is called the excepb0oW.)
"Nlmldfer." ..-..'

PREDEFINED EXCEPTION

PACKAGQ._1TANDARD * TEXT_1O

a NUMERIC-ERROR * DATA-ERROR
* CONSTRAINT-ERROR * USE-ERROR

E-6* PRAUGMM O o NAMLERROR

* STORASEJURRO * SlATUS.RROR
* TAS•KII ERROR * MODE-ERROR

e END-ERROR
9 LAYOUT-ERROR

* UEVICLERRUO

6-2 lExcepit**

Sulet Note:

DECLARATION

"* An exception can b declared In any derlntin prt

"* •tlows the faolo VslalWly rien as any othr deceamtlon. E-7

" Form

OUTOF-LIMITS :exception:
RANGE-ERROR exception;
8TACK.OVERFLOW : exception:

package INTEGER-STACK Is

MAXRUMBER constant :- 10-000;
type NUMBERS is range .MAXNUMBER .. MAX.NUMBER:
type STACK.TYPE is private;
procedure PUSH (A.NUMBER in NUMBERS;

ON in out STACK-TYPE): E;

procedure POP (A.NUMBER out NUMBERS:
OFF-OF In out STACK.TYPE):

STACK-OVERFLOW exception:
STACKUNDERFLOW exception;

-*O private

. nd'INTEGER-STACK:

FRAME

ow w ow ct0m toemptw se ons• ad mclae scewpwion
.. e lUsep

begin
*-mauenc of eul S~E4

ond;

inepWfJpldlrinnimc Im
vmnaeucepdoo...chOcS (I . •.ahpumAS&

* amruptit €cho•e :- e •p~tJI1 l olber

W..S~pU@AS 64

studlet Notes.

EXCEPTION HANDLER

0 0ptional part of a Irame that can Contain responses to exceptions
raised in the frame

E-10 bgoinn
- statements

when PATARFRO - > - satements
when CONSTM4INTERROR - > - statements
wt'•n others -> - salltefents

elnd;

PROCESS

9 When an exception is raised within a frame, processinO
irnmeditul suspended.

Eli1 * What happens next depend on the presence or absence of an

appropnate exception handler.

- Handle exceptvon within an exception handier
- Propagate exception

RAISMM AN tAcEIPoN

E-12 0 Can be raised imkplci? by Nte nn iet system

0 Can ba raised explcitty by use of the raise statement

ras EXCEPTION_1NAME,

6-4 Emptlons,

ShwG. "ohm:

.*package SIMPLESTACK is

type STACK.TYPE is limited private;
subtype ELEMENT.TYPE is CHARACTER:

procedure PUSH (AVALUE : in ELEMENT.TYPE:
A.STACK in oul STACK.TYPE);

procedure POP (A.VALUE : out ELEMENT-TYPE:
A.STACK : in out STACK.TYPE);

E-1 3
STACK-OVERFLOW. STACK-UNDERFLOW : exception:

private
MAXIMUM.SIZE : CONSTANT :- 60;
type STACK.SIZE is range I .. MAXIMUM SIZE;
type LIST-TYPE Is array (STACK-SIZE) of

ELEMENT.TYPE;
type STACK.TYPE is

record
LIST : LIST.TYPE;
CURRENT-POSITION : STACK-SIZE :- 1;

end record:

end SIMPLE.STACK:

package body SIMPLE-STACK Is

procedure POP (AVALUE out ELEMENT.TYPE;
A-STACK in out STACK.TYPE) is

begin
A.STACK.CURRENT.POSITION

ASTACK.CURRENTPOSITION - 1;
A.VALUE :- A.STACK.LIST (A.STACKCUIRENT.POSITION):
exception

when CONSTRAINT-ERROR ->
raise STACK.UNDERFLOW;

end POP:

procedure PUSH (A.VALUE : In ELEMENT.TYPE;
A..STACK In out STACK.TYPE) is E-14

boetI

"A.STACK.LIST (A-STACK.CURREUT.POSITION) :- A-VALUE;

A.STACK.CURRENT.POSITION :-
ASTACK.CURRENT.POSITION +1:

exception
when CONSTRAINT-ERROR ->

raise STACK-OVERFLOW;

(* enc PUSH:

Exceptioms 6.5

Student Notes:

with TEXTLIO. SIMPLE-STACK;
procedure STACK-USER is

package COUNT-IO is new TEXT-iO.INTEGER_10
(L.ONG. INTEGER):

MY.STACK SIMPLESTACK.STACK.TYPE;
COUNTER LONG.-INTEGER :- 0:

begin

E-15 loop

SIMPLE-STACK.PUSH ('a', MY.STACK);
COUNTER :- COUNTER + 1:

end loop:

except ion

when SIMPLE.STACK.STACK.OVERFLOW ->
TEXTIO.PUT (*Pushed '):
COUNT-IO.PUT (COUNTER):
TEXT.IO.PUTLINE (times');

end STACK-USER;

64 Exceptions

GENERICS

". 9 Purpose

* Generic Declaration. G.1

* Generic Instantiations

* Generic Parameters

GOALS AND PRINCIPLES OF SOFTWARE
ENGINEERING SUPPORTED BY GENERICS

,all G-2

(0 a Reliability S Modularity

* Understandability * Abstrction

e Modifiability * Localization

e Efficiency * information Hiding

what i So*=ar Reibily? 6-3

hould be ai m peftmnt?
Who should be conurood wIth Reuaimi~ty?

44

GeHwlc 7-1

Student Notes:

procedure DUP.ICATION is

type PERSON is
typi TAPLE is ...
typ COUNT is..
type IAM is...

procedure SWAP-PEOPLE (LEFT, RIGHT: in out PERSONS) is
TEMP : PERSON - LEFT;

begin
LEFT :- RIGHT:

RIGHT :T IEMP;
G-4 nid SWAPJEOPLE:

procedlum SWAP-TABLES (LEFT. RIGHT: in out TABLE) is
TEMP :TABLE:.- LEFT,

begin
LEFT :a, RIGHT,
RIGHT :- TEMP:

OW SWAP.TABLES;
procedure SWAP.COUNTS (LEFT, RIGHT - in out COUNT) Is

procedure SWAP-NAMES (LEFT, RIGHT : mout NAME) is

begin

wnd DUPLICATION. 7)

g9ateric
type SWAP.TYPE is pnvate,

pracsure GENERIC-SWAP (LEFT, RIGHT : in out SWAP.TYPE);

procedure GENERIC-SWAP (LEFT, RIGHT in out SWAP-TYPE) is
TEMP : SWAP.TYPE :- LEFT;

ben
LEFT :, RIGHT;
RIGHT :-a TEMP:

end GENERIC..SWAP:

7-2 Genprics

Student Notes:

witth GENERIC.-SWAP;
W' procsdure NON-DUPLICATION is

type PERSON is ...
typ TABLE is ..
ye COUNT i...

type NAME is... G-6

prow ure SWAPPEOPLE is now GENERIC-SWAP (SWAP.TYPE - >
PERSON):

pocuure SWAP.TABLES is nw GENERIC.SWAP (SWAP.TYPE - >
TALE);

proeduri SWAP.COUNTS is now GENERIC-SWAP (SWAP.TYPE >
COUNT]:

rocedure SWAP-JAMES is rw GENERIC.SWAP (SWAP.TYPE ->
NAME):

begin

en NON..DUPLICATION:

G-7

DEFJNMON

G-8

"* A generic is a template for a program unit,

"* Instantiation gives us an actual program unit from that template.

Generic; 7-3

Student Notes:

GENERIC DECLARATIONS

9 Two Classes

- Generic Subprograms
G-9 9weric

- GENERIC FORMAL PARAMETERS
Procedure (function) ...

- Generic Packages

generc
- GENERIC FORMAL PARAMETERS

package.,.

GENERIC INSTANTIATION

G-10

* Creates an actual instance of a generic unit
* "Fills in the generic formal parameter with an actual parameter

GENERIC PARAMETERS

*Type
G- 11 0 Value

* Object
* Subprogram

7-4 Generics

Student Notes:

MATCHING RULES

type IDENTIFIER is digits <>; Any floating point type

type IDENTIFIER is delta <> Any fixed point type G.12

type IDENTIFIER is range <>; Any,/ite)W type

type IDENTIFIER is (<>); Any discnt type

type IDENTIFIER is array Any constrained array type omth same
(INDEX-TYPE) of INDEX-TYPE and
COMPONENT-TYPE; COMPONENT-TYPE

type IDENTIFIER is array Any unconstrained array type wtlh
(INDEX-TYPE range <>) of amine INDEX.TYPE and
COMPONENT-TYPE: COMPONENT-TYPE

MATCHING RULES (Continued)

type IDENTIFIER is access Any access type that designates
NAME; same NAME type (subject to

constraint rule)

type IDENTIFIER is private: Any type except a limited type G-1 3

type IDENTIFIER is limited Any type
private:

OBJECT : in TYPENAME, Value or object that is of same
type as TYPE-NAME

OBJECT: in out TYPE-NAME; Object that is of same type as
TYPE-NAME

with procedure NAME Procedure that conforms to
(PARAMETERS) parameter number and types

[is <> I is DEFAULTJAME]:

with function NAME Function that conforms to
(PARAMETERS) parameter number and types and

[is < > I is DEFAULTNAME]; has same result type

Generics 7-5

Student Notes:

g ner ic
type ELEMENT-TYPE is private.
SIZEOFSTACK : in POSITIVE;

package BOUNDEDGENERICSTACK is

type STACK.TYPE is limited private,
procedure PUSH (AN.ELEMENT : in ELEMENT-TYPE;

G14 ON : in out STACK-TYPE).
procedure POP (AN-ELEMENT : out ELEMENT-TYPE:

OFF.OF : in out STACK.TYPE);
private

type STACK-COUNT is range 0 SIZEOFSTACK.
type STACK-ELEMENTS is array (STACK-COUNT)

of ELEMENTITYPE

type STACK-TYPE is
record

TOP STACK-COUNT a 0.
BOTTOM STACK-COUNT := 1:
LIST STACK.ELEMENTS:

end record
end BOUNDEDGENERICSTACK;

7-6 Generics

Student Notes:

with BOUNDEDGENERIC-STACK.
procsdurl DEMO-STACK is

LENGTH constant ;- 80
subtype NAME-TYPE is STRING (1 LENGTH):

package NAME-STACK is new BOUNDEDGENERICSTACK

(ELEMENT-TYPE -> NAME-TYPE.
SIZE.OFSTACK -> 100):

STACK.OF.NAMES NAMESTACK STACK-TYPE:

begin

end DEMOSTACK;

GENERIC BODIES

G-16 9 Generic Formal Parameters

e Writing Generic Bodies

GENERIC FORMAL PARAMETERS

G-17 ,'qscrlbes two things:

e Matching requirements for actual parameters

* Operations that can be assumed within the generic body

Generics 7-7

Mudnt ot"

ACTUAL PARAMETERS

MATCHNGWX UES

G-18

01111111INC FORMAL PARAMUlIR

OPMRTMOS

GENERIC WOY

typeINTGER-YPEis range < >;

Drocedure NEXT (ANY-INTEGER: in out INTEGER-TYPE);

procedure NEXT (ANY-INTEGER :m out INTEGER-.TYPE) is
begin 6-19

ANY-INTEGER -ANY-INTEGER + 1:
exceation

wh~en CONSTRAINT-.ERROR
ANY-INTEGER - INTEGER-.TYPE'FIRST;

end NEXT

generic
IMp DISCRETE-TYPE is(<)

procedur MWX (ANY..DI$CRETLVALUJE in out DISCRETL1WPE);

proefurie NEXT (AN9Y..DMSCM VALUE :In out DISCRETTYPE) is

... NOT AVAILABLE 62

ANY-.DISCRETE-VALUE DI SCRETELTYPE 'SUCC (ANY..DISCRETL VALUE):
exception

witen CONSTRAINT-ERROR -

ANY..OISCRETE-VALUE. DISCRETE-TYPE'FIRST:
wW NEXT. @

7-8 GonerIcs

Student Notes:

GENERIC BODY

G-21 G Defines implementation of the generic unit

9 Can use operations available from the generic formal parameters

USING FORMAL TYPE
SG-22 PARAMETERS

Specify which operations are available for the type

PROMPT: in STRING:

G-23 type ANY.INTEGERTYPE is range-.
procedure GET-VALIDINTEGER (AN.INTEGER out ANY-IN1EGER-TYPE):

Generics 7-9

Student Notes:

with TEXT...IO,
procedure GET.VALID..INTEGER (AN..INTEGER ouI ANY. INTEGER-TYPE)is

package INT-IO is new TEXTIO1f INTEG6R[l0 (AN'i INTEGER. TYPE,

begin
loop

begin
TEXTIO. PUT (PROMPT);

G-24 INTIO.GET (AN.INTEGER);
exit:

exception
when others - -

TEXTIO. SKIP-LINE;
TEXTJO.PUT-LINE ("INVA ID.)

end:
end loop;

end GETVLID. INTEGER.

generic
SIZE in NATURAL.
type ELEMENTS is private.

package STACKS is

type STACK TYPE is htmined privite

procedure PUSH (SIACK in out STACK !YPt
VALUE in EL[MENTS,

procedure POP (STACK m out STACK TYPi
VALUE out ELEMENTS,

G-25 private
Stack size determinen u,
generic value paraml•nrk

type NUMBER..OFELEMENTS is range 0 SIZE

type ELEMENT .ARRAY is array (NUMBER-OF ELEMENTS)
of ELEMENTS

type STACK.TYP is
recordI

DATA. ELEMENT-ARRAY.
TOP NUMBEROF.ELEMENTS 0

end record.
end STACKS,

*e

7-10 Generics

Student Notes:

generic
type ELEMENTS is private:
type INDEX is (<>):
type ARRAY-TYPE is array (INDEX) of ELEMENT:
with function "<" (LEFT, RIGHT : ELEMENT) relum BOOLEAN;

procedure SORT (UST : in out ARRAY.TYPE);

procedure SORT (LIST : In out ARRAY-TYPE) is
TEMP : ELEMENT;

begin - SORT
for OUTER in INDEX'first..INDEX'pred(INDEX'Iat) loop

for INNER tn INDEX'succ(OUTER)..INDEX'Iast loop
it LIST(INNER) < LIST(OUTER) then

TEMP :- LIST(INNER):
LIST(INNER) :- LIST(OUTER);
LIST(OUTER) :- TEMP.

end if.
end loop:

end loop:
end SORT.

Generics 7-11

Student Notes,
TASKS

a Purpose

* IndepenCeniTasKs T.1

0 Communiczliing Tasks

e Tasking Statements

TASKS

A task is an entity that operates In
paralll with other entitis"

Tasking may be Implemented on
Single Processom

. MultitproceMtu
Mutl.-Computlar

TASKS

e Important aspect of embedded sySterMs

* Ntigtctsd in most aIgquages currently in pi oduction use
T-3

- Lack of cottfitence in control of parallelism

- Low level feature

"* Need an implementation independent model

"* Ada draws up operating system features into the language

Tasks 8-1

Student Notes:

I.e ADA TASKING MODEL (

(Communicating .f,. uentia! Proces.ns)

* Petri Net Graphs

T-4 - Used as a tool to explain tasking model

a Parallel Independent Processes

- Simple" form of tasking model

* Communicating Sequential Processes

"- "Full" Ada tasking model

0 PETRI NET GRAPHS

P1 T1 P2 12 P3 T3 P4 T4

T-5

* PETRI NET TRANSMON RULE

T-6
Take one token from each of the enabled transition's input places;
deposit one token in each of the transition's output places

8-2 Tasks

Student Notes:

CONCURREf. 'PETRI NETS
Samad on Ow We oe a . w1 . to cret a raw
UWaed of sentra

T-7

'q I

*~ P6r pros So 110. OW X m~s bin back fa a
*wood ofsPere

PARALLEL INDEPEND3ENT PROCESSES

* omdefh it ~ oMedorvous

*a sufti Oee mat vwal Im towSol h -to

T-9

4 o"

Toasa 8-3

Student Notes:

procedure MAIN is

task T1.
,;*;k T2;

task body T1 is
begin

T-10 null:
end T1.

task body T2 is
begin

null:
end T2:

begin
null;

end MAIN.

with TEXTIO; use TEXT.10t
procedure TASK-EXAMPLES is

task PLAIN;
task WITHLOCALDECLARATIONS:

task body PLAIN is
begin

null:
@ 1end PLAIN;

taSK booy WiTr_LOtAL_UiCLAhATiON6 is
FOREVER: constant STRING :,- lorever;

begin
loop

PUT-LINE ('This task puts this message out");
PUT (FOREVER);
NEW .LINE;

end loop.
end WITH-LOCALDECLARATIONS.

begin
- both tasks activated here
null,

- This subprogram does not terminate execution until

- all dependent tasks are ready to terminate
end TASK-EXAMPLES.

procedurt MONITOR-GATE is

task WATCHHEAT.SENSOR;
task WATCHSOUNDSENSOR:

T-1 2 ptozedure SOUND-ALARM is separate:
task body WATCH-HEATSENSOR is separate:
task body WATCH-SOUND.SENSOR is separate;

begin

- tasks are activated
null.

8-4 Tasks end MONITORGATE:

Student Notes:

separate (MONITOR-GAT•)
taj, body WATCH-SEAT-SENSOR is

junction DTECT.HEAT return BOOLEAN %s SepIratt', T-13

begin
loopi0 OETGCT_1EAT thin

SOUND.ALARM:
end it;

and loop'.
end WATCH-HEAT.SENSOR;

separate (MONITOR-GATE)
task body WATCH.SOUND-SEN$OR is

junctiOn DETECT-SOUND return BOOLEAN 1s t1e10111111

l oop
IP OETECT.SOUND then

SOUND.ALARM,
mnO 11:

eno Op:
end WATCH.SOUND.SENSO,

COMMUNICATING TASKS

T.1i

"* Ada Tasking Model

"* Rendezvous

o Task Entries

"* Communicatlon Process

Tosk& 6-5

Student Notes:

TASK COMMUNICATION
T.16

Ada Tasking Model:

Communicating Sequential Processes

RENDEZVOUS

TNk A; Tosk 8;

T-17 7tr -.-,,

II

RENDEZVOUS

T-18 * The process in which Iwo parallel tasks synchronize and optionally
communicate

* A rendezvous is the interaction that occurs between two parallel
tasks when one task has called in entry of the other task and a
corresponding accept statement is being executed by the other
task on behalf of the calling 'ask

8-6 Tasks

Student Notea:

RENDEZVOUS

"* Defined In the speeftaeit of a task & D

"* Define tho Commutkcation paths to a task

"* Are cafed from outside & tk when the caller wishes to T-19
communicste with a task

TASK ENTRIES

task PRINTER-CHANNEL is
entry PRINT (JOB: in LISTING.TYPE);

end PRINTER-CHANNEL:

task Ci OCK is
entry SET-TIME (CURRENT: in TIME);
entry GIVE-TIME (CURRENT -out TIME):

end CLOCK:

task LAUNCH-BOMBERS is
entry. LAUNCH,
entry FAIL-SAFE (CODE : in PASSWORD);

ends LAUNCHBOMBERS:

COMMUNICATING WITH A TASK

o Tasks are communicated with through their entries using an entry 1-21
call 4-

PRINTER-CHANNEL.PRINT (MY.JOB);

CLOCK. SETTIME(NEWTIME):
CLOCK.GIVETIME(THE.TIME)

LAUNCHBOMBERS. LAUNCH;

Tasks 8-7

Student Notes:

ENTRY CALL (

T-22 e Places an entry call on the queue associated with the entry of a task

* Does not immediately start a rendezvous

ACCEPT STATEMENT

T-23 * Occurs in a task body

* Corresponds to task entries

* Specifies acions tP ' e~ior.'e : rewr, ; (

RENDEZVOUS

"Whien an entry has been called and the corresponding accept statement

T-24 is reached, rendezvous occurs

- Rendezvous is the execution of the sequence of statements following
the *do" and continuing to the *end"

Alter rendezvous is completed, the two tasks execute in parallel again

8-8 Tasks

Student Notes:

ACCEPT STATEMENT . 7)

"* Syntax

accept-statement ::-
accept entry.simple~name j(entryjfnex)} !formal-part] (do

sequence-of-statements
end Ientry-simple-nameS);

"* Examples
T-25 -

accept PRINT (JOB: in LISTING-TYPE) do
...-- sequence of statements

end:

accept SETTIME (CURRENT, in TIME) do
...- zequence of statements

end:

accept LAUNCH.

task CHANNEL-IO iS
entry PR!NT (JOB: in LISTING.TYPE).

end CHANNEL-1O:

tu•tion FREE return BOOLEAN is separate:
procedure SEND (JOBTOPRINT' in LISTING-TYPE) is separate.

tars,: torv CHANNELIO is
LOCA._COPY: LISTINGTYPE.

begin
Ioop

accept PRINT (JOB in LISTING-TYPE) do T-26

LOCAL.COPY := JOB;
end;
loop

exit when FREE;
end loop:
SEND (LOCALCOPY);

end loop:
end CHANNELIO;

begin --ma:n program

CHANNELIO.PRINT (MYJOB),

Tasks 8-9

Student Notes:

(

V procedure CC' "'"TDOWN is

task SEQUENCER is
entry ONE;
entry TWO:
entry THREE:

end SEQUENCER;

procedure DO.NOTHING is
begin

for INDEX in 0.. 10.000 loop
null:

T-27 end loop;
end DO-NOTHING:

task body SEQUENCER is
begin

accept ONE: DO-NOTHING:
accept TWO: DO-NOTHING.
accept THREE:

end SEQUENCER:
begin --COUNT.DOWN

SEQUENCER. ON E
SEQUENCER.TWO:
SEQUFNCER THREE:

end COUNT_D.OWN:

8-10 Tasks

Student Notes:

TASKING STATEMENTS

* Delay Statement

* Select Statement T-28

SAbortt Statement

DELAY STATEMENT

delay-statement :,a delay simple-expression:

a Suspencs further execution of the task for at least the time interval T29

specified

9 Simple expression must be of the predefined fixed point type
DUiRATIO N

SECONDS: DURATION:

deiay CURATION (3.0 SECONDS);

procedjre M.01NTOP is

task CHECKRADIATIONLEVEL;
function UTDOF.LIMITS return BOOLEAN is separate;
procedure SOUND.ALARM is separate.

task body CHECK-RADIATION., LEVEL is
begin

loop
if OUTOFLIMITS then

SOUND.ALARM;
else T-30

delay 5.0;
end if;

end loop;
end CHECK-.RADIATION..LEVEL;

begin
null,

end MONITOR,

Tasks 8-11

Student Notes:

Student Notes:

SELECT STATEMENT

T-3 , Allcws for choosing between multiple entries for renoezvous

9 Allows for choosing the semantics of an entry call

select-statement :: 3 selective-wait
conditionalentry.caltl
btmed._ntrycall

task BANK-TELLER is
entry MAKE-DEPOSIT (AMOUNT: in FLOAT):

T. 2? entry MAKE-WITHDRAWAL (DESIRED : in FLOAT,
AMOUNPT ou! FLOA1-,T):

end BANK-TELLER.

task bd'y BSAIKTELLER ts

begn
loop

splect
accept MAKE_.DEPOSIT (AMOUNT: in FLOAT' io

end,

T-33 or

accept MAKE-WITHDRAWAL (DESIRED: in FLOAT;
AMOUNT : out FLOAT) do

end;
end setect;

end loop,
end BANKTELLER:

8-12 Tasks

Student Notes:

task BANK.TELLER is 1-34

entry MAKE-DEPOSIT (AMOUNI: in FLOAT);
entry MAKEDRIVE.UP.DEPOSIT (AMOUNT: in FLOAT);

end BANK-.TELLER,

SELEC.TIVE WAIT.Y,'tTH ELSE

loop

accept MAKEOEPPOSiT (AMOUNT: in FLOAT) do

"W
T-35

enD:
oraccj: MAKE.DRIVE-UPDEPOSIT (AMOUNT: in FLOAT) do

end,

DOFILING:
end se!ect;

end loop,

SaLECT'iV WA;T WITH GUARDS

seCt
when BANKING.HOURS " >
accept MAKE..DEPOSIT (A.1IOUNT : in FLOAT) do

or and

when DRIVE.UPHOURS ->

accept MAKE.DRIVE.UP.DE POSIT (AMOUNT :in FLOAT) do

end:

LIOFILl~iG,

e:v s clct,

Ta90s B.13

Student Notes:

SELECTIVE WAIT WITH A DELAY

A.
IooD

seled
when BANKING-HOURS
accepi MAKE-DEPOSIT (AMOUNT in FLOAT) Cc
end:

T-37 or

when DRIVEUP.HOURS - >
accept MAKY.DRIVLUPDEPOSIT (AMOUNT: in FLOAT) do

end,
or

d&lay DURATION (2.0 * HOURS):
TAKEAB,;EA<:

erd select:
end loop:

SELECTIVE WAIT WITH TERMINATE

loci"

Select
acceptA O ((-

end,
or

a..zepl MAKE-OWVE-UP-DEPOSIT (Am,,OU; ii FLCA7,
do

end:
of

- terminate,
end select.

end loop:

CONDITIONAL ENTRY CALL

T-39 conditional-entry.call :: =
selecd

entrycall statement
[s~q-:em.,e-of-statements}• el!se

sequence ol.statements
-: 4 Tasks eend see.t,

Student Notes:

BANK-TELLER. NAKE-DE POSIT (20.00), -4
else 14

GlVE-.UP-,
end SELECT;

TIMED ENTRY CA&LL

timcd-,entry-.calI 2 =

entry..call..statemeflt
Isequence..of-Ltatemeflts

delay-Elt~rflative
end se~ct:

select
BAt4ICTELLEA.MAX(E..DEPOSIT (1-000O.00):

delay DURATION (10.0 MINUTES);T4
TAKE-.A-.HI KE;

e:id select:

Tasks B-15

Student Notes:

ABORiT STATEMENT

* aPoorstatement =abori task-narnie taý,Knwre
Causes a task and all dependent tas~s to t~oeABNOTIAL ',hus

T-43 preventing any further rendezvous with thE tasL'
9 An abnormal task becomes completed in certan circumstances

- accept statement
- sele.ct statement
- deelay statement
- PntrY C2;1

~~'~an ABVJORMIALI task or if. a c,.ii nas be-i m*c at tnt'.
and is queued raises the excep,;an TASKUNG-EF.P R

rec~uri. w ucjnditional, term ination"

3, 15 Tijsik

STUDY GUIDE/WORKBOOK

E30AR4924 004
E4OS'r4924 02090P 893

Technical Training

FUNDAMENTALS OF Ada PROGRAMMING/

SO M ARE ENGINEERING

DECEMBER 1987

USAF TECHNICAL TRAINING SCHOOL
3390th Technical Training Group

Keesler Air Force Base, Mississippi

Designed For ATC Course Use

Alt kbt 6.Af) 00 NOT USEON THE JOB

Comm-Comp Systems Advanced Training Division HO E30ARA924 004
Kessler Air Force Best, Mississippi 39534-5000 E40ST4924 020

1 Oct 1987

Philosephy

The philosophy of the wing emerges from a deep concern for individual Air
Force men and women and the need to provide highly trained and motivated per-
sonnel to sustain the mission of the Air Force. We believe the abilities,
worth, self-respect, and dignity of each student must be fully recognized. We
believe each must be provided the opportunity to pursue and master an occupa-
tional specialty to the full extent of the Individual's capabilities and aspi-
rations, for the Immediate and continuing benefit of the individual, the Air
Force, DoD and the country. To these ends, we provide opportunities for mndi-
vidual development of Initial technical proficiencies, on-the-job training in
challenging job assignments, and follow-on grovth as supervisors. in support
of this Individual development, and to facilitate maximum growth of its stu-
dents, the wing encourages and supports the professional develop.ent of its
faculty and administrators, and actively promotes Innovation through research
and the sharing of concepts and material with other educational institutions.

CONTZNTS

Chapter Title Page

I Introduction1 0.. 6. 6.. 0.. . . . 1-1

2 Training Evaluation and Feedback System 2-1

3 Fundamental.s of Ada Systems 3-1

4 Basic Ad& Types 4-1

5 Control Structures 5-1

6 Subprograms 6-1

7 Packages 7-1

8 Exceptions 8-1

9 Generics 9-1

10 Tasks 10-1

11 Program Design Using Ada 11-I

Appendix A: Software EngLnetmring Standards A-I

Appendix B: Ada Clossary B-i

i

Chapter 1

ORIENTATION

WELCOHE are readily accessible in every
classroom. Should you recognize a

Welcome to the Fundamentals of problem or a deficiency, do not
Ada Programming/Software Engineering hesitate to critique it. Likewise,
course. This class will give you you may submit critiques recognizing
knowledge of the fundamentals of outstanding units of instruction,
engineering good Ada systems. It's instructors, facilities, equipment,
a challenging class with time split etc. We do ask you to critique
between lecture and hands on exer- training and facilities on a sepa-
cises. It Is our intention to make rate form. Your critique will be
this course as informative and int- given careful consideration; it will
eresting as possible; however, we provide us with valuable ideas which
cannot accomplish this without your may improve training, as well as
assistance. You are encouraged to facilities and services.
participate in discussions and con-
tribute as-much as possible to en- Your sincere cooperation in the
hance your learning and make the Critique Program can be beneficial
course more meaningful and enjoy- to all students that follow you.
able.

All critiques can be submitted
In this chapter, we will cover without fear of reprisal or prej-

-.he studeua ctitique progra-. energy udice.
Sconservation, fraud, waste and

abuse, administrative policies, and- FRAUD, WASTE ANDABUSE (FW&A)
a course overview ,

The Air Force policy on fraud,
STUDENT CRITIQUE PR•GRA waste and abuse is to use all avail-

able means to prevent, detect, cor-
To critique something is to rect and discipline, as warranted,

express your opinion about the sub- perpetrators involved in FW&A.
ject. The Student Critique Program
exists for all ATC KTT Courses and Definltions
at all Technical Training Centers
because we are interested in your I. FRAUD: Intentional mis-
welfare and the effectiveness of our leading or deceitful conduct that
training. The purpose of the pro- deprives the Govertiment of its re-
gram is based upon the assumption sources or rights.
that whatever bothers or distracts
you will adversely affect your 2. WASTE: Extravagant, care-
learning. less or needless expenditures of

Government resources from improper
Although critiques are admin- or deficient practices, systems,

istered at the end of the course, controls or decisions.
you may critique training at any
time during this course of instruc- 3. ARUSE: Intentional wrong-
tion. Critique forms (ATC Form 736) ful or Improper use of Government

•O 1-1

resources, i.e. misuse of rank, po- any appointments during the length
sition or authority, of this course. If an appointment

cannot be rescheduled, inform the
Any Person who knows of fraud, instructur as soon as possible. If (

waste or abuse has a duty to report you miss a portion of a class it is

it to his or her supervisor, .um- your responsibility to make arrance-
mAnder, inspector general, Air ments with the instructor to find

Force Audit Agency (AFAA), AFOSI, out what material was missvel and ho,w

the security police or other proper it can be made up. If for any re2-

authority. Each member of the Air son you miss more than 10 perceit of

Force, military or civilian, has the the class time you can be reroved

right to file a disclosure without from training and asked to resched-
fear of reprisal. The following are ule.
examples of FW&A chat students
should avoid: A class leader will be ap-

pointed by the instructor during the
1. Abusing equipment, whether first hour of class. The class

intentional or not. leader acts as your reprosantative
and is tasked with the f'dlovwr4n

2. Wrongful destruction of responsibilities:
student literature. !

1. Assist the instructor in

3. Willful waste of janitorial maintaining ordtr at all timr dur--
supplies. - ing the class period.

A. Facilities abuse. 2. Supervise classroom clean-
up.

5. Unauthorized use of Gnvern-

ment telephone services. 3. Assume control of the class
in the absencee of thw instructor. eL

6. Intentional lack of person- as ddrected.
al comitment in doing a duty or a e

task for which a salary is being 4. Act as spokesman for the
paid. class in any matter which the class

members deem necessary, usually mat-

7. Intentional practice to ters which require supervisory at-
avoid making corrections to known tention.
deficiencies in order to prevent

fraud, waste and abuN. 5. Encour•gu miliary stitdents
ii the class to caintain high stan-

8. Waste/unauthorized distri- dards lAW AFR 35-10.
bution of Government supplies.

FaciLities Available
ADMINISTRATIVE POLICIE S

Room . rvak Are.'

INSTRUCTCK:_ __-
Room Feniiie Latrine

Duty hours are to dur-

ing this course. Ten minute breaks Room - ale Latrine

are provided each hour with one hour
for luah.b. Room Administration Offices

You are asked to reschedule Phone Number

1-2

C±;7n OVIlm Unit 7: Packages
•0Unit 1: Introduction Unit 6: Exceptions

unit 2: Trs•ning Evaluation reed-
back System Unit 9: Gonerics

Unit 3: Fundamental$ Of Ada SY~teUs Unit 10: Tasks

Unit 4: asic Ada Types Unit 11: Program Desinn Using Ada

Unit 5. Cantota1 Ituctures Unit 12: Develop Software Using Ads

Unit 6t' Su•pT•oQaU s

I-3

CR&PTR 2

THE TIMIING EVALUATION FPEDUC SYSTEM

OUECTIVE The evaluation includes the
collection, collation, analysis, and

Using the -student handout as a Interpretation of feedback infor-
reference, . briefly describe the marion to aseess the effectiveness
purpose of the training evaluation of training and the extent to which
program, course graduates satisfy field per-

formance requirements.
T.TIMODUCTION

The traininj evaluation feed- S"
back system is a useful too! to keep Commands conducting formal
our courses up to date with the re- courses are required to conduct
quirezents of the Air Force. evaluations to determine the ade-

quacy and relevance of training and
INFO MATION to make revisions as needed.

PURPOSE OF EVALUATION Using commands are required to
participate in the evaluation pro-

The purpose of the training gram by furnishing Information to
evaluation program is to obtain the representatives of trtining activ-
information necessary to determine ities during:
the:

1. Ability of graduates to 1. k'eid vi&U.

perform their assigned task to the 2. Completing and returning
level of proficiency specified in field survey questionnaires
the applicable training standard.

3. Completing.Training Quality
2. Extent to which skills ac- Reports to iden.tfy tratiinn defi-

quired in training are used by grad- clencies and recon-:mnding changes
uates in the field. to training standard t,%sks, knowl-

edge or proficiency levrls that are
3. Extent to which knowledg not meeting command requirements.

attained in training is retained by
graduates in the field. SUW4AY

4. Need for revisions in the The program provides a means
training standards and courses to whereby supervisors and graduates
improve training effectiveness and can help training activities develop
responsivene•s to the needs of the and conduct training programs that
using commands. are best suited to their needs.

2-1

Chapter 3

FUNDAIU'XrALS OF Ad& SYSTEMS

OBJECTIVE We ea:n identiiv a numher of
principles to keep in mind while

Given a simple progrnm specifi- developing software that supports
cation, student instructional mate- the goals of reliable, maintainable,

rials, and student notes, engineer a efficient, and understandable soft-
program in Ads that correctly imple- ware. These principles are:
ments the problem. Program must
conform to course software engineer- o Abstraction - Considering
ing standardcs..:ln i'otructor may pro- only the important features
vide up td 4 iasists. at this level and ignorin;

the unimportant details.

I Nh-ODUCTION
o Information Hiding - Makir,

You may have heard the claim underlying details inacces-
that "Ada is just another program- sible.
ming language." Well, that depends
or. your point of view. Any program- o .. Hodularity - Breaking up a

ming language is a tool to transform large system into manageable
a software design into the actual pieces.
machine language Instructions that
a computer performs. It. that re- c Local1zqr . 0n - Phys ict1.iy
spect, Ada is another c.,puter lan- grouping tog.ether lo,;ically
r,:.ge, j',t r. a hand shrwvel and related entities.

diesel powered shovel are both tools
to dig a basement. However, when o Completeness - Ensuring that

digging a basement, you should all required features are

choose the tool that best supports present.
the job. When developing software,
you should choose the tool that best o Confirmability - Ensuring

supports the goals and principles of that the system can be test-

software enginrering. ed to m~ke sture it's com-

plete an4 meets the require-

1 FFO, -RUATI 'N ments.

SOTNARE ENGINEERNC o Uniformity - Ensuring that
there are no unnecessary

Wh•t is Aoftware engii•erin.4? differences in notation

For the purposes of this course, we that can be.confusing.
vivw it as an orderly application of

, tools to develop software that is Throughout the course we will
reliable, maintainAble, efficient, relate the feattures of Ada to these

and understandable. Using this def- goals and principles of software
inition, a programming Language is engineering.
just one of a number of tools that
is used when called for in applying AdasLANGUAGE FEATURS
some mettodology tn develop soft-
ware. Anyone whu has looked through

3-1

the Ads reference manual can tell more like black boxes with the com-
you that Ada is a complex lnnxuaKe. munication requirements specified
The features of Ada are integrated-- by the specification.
in other words, to writ* oven a sim-
ple Ada program, you netd at least a There are four different kinds
shallUo,, knowled;ý c n itr0e- of nf program units that wv .•n use to
lang•age feltureb. breaik up our system. These ar:

Data Typing o Subprograms - Program units
that perform an operition or

One of these features is Ada's calculation.
use of strong data typing. Strnng
typing means that, every* object o Packages - Program units
(variables and constants are ob- that allow you to group to-
jects) has to be associated with gether logically related
Some type. This type defines the entities.
set of "valtus"n'nd the set of oper-
ations for th.t object. Ado also o Genarics - Program units
doesn't A11o•" yitk to =!.x appl-.' and that generalize subpro~rams
oranges; if yotu have two objects of or paekages.
different type, yau can't itr.licit-
ly mix them in at. operation. In o Tasks - Programt, nits that
other languages, you mjy declare an ru:n in parallel with other
objecl to be an integer, character, program units.
etc. L,,;s is similar to declaring
an object in Ada, Althou-.h Ada In class, we'll explore each
takes this one step further it that. of these different program units.
it allows you to dwclare yotr own
distinct types. This helps you Program .Structure

world problem. An Ma program is si.pty a main

subprogram. The body to this main
Program Units subprogram contains two parts: the

declarative part and the executable
Prot k units are structures part. The declarative part is where

usetd to k up lArw, aoftware we declare our types, objects, or
sst.ems int smaller. w'urtu mm:t'tg- even other proKruvi titizs. Thu exe-

, .rt:. An Adta pru.:rnm sho"'td cutable par: cui:taiut tr.'' .cii
thsr•'r --o % -Ise ,rurjt.n u;,it.. to A [t, p.rfo::..*d ,!ur :.; . .:- c.:'. A
tl.-. code up Jzu. - eas'.l, t-,-.,ple Asia pruogram -':i.1 tla i,'..-.
able seg,.-unts. Each progra.m utvit 0ike this:
hM two parts: a specLficatln:i nw-11 a
bndy. The "..-.cificat ion is tht' procedirt,: MAIN Is '

log10.ial view 0f this prugr:xn unit
which defines the interface to other -- Duclnrrtve Part
progra•a units (ahstar•.clon). TN.
body dafin•i how the details uf the begin
program unit are implemented. These nill; -- £axetable Part
details that are in tho body are end MAIN;
inaccessible to other program units
(Information Hiding). The s•epnra- The declarative and executable parts
rini of specification giiJ. bowy nl- nrh separated by the word 'begin'.
luw yOU tn vi,-e thie provnm mu:icv

3-2

Everything to the right of a double don't require Input or output of
dash '-' would be a comment. We'll text don't have to suffer with the
add more to. this basic structure overhead of these routines.
later in class.

For programs that need text
PROGRAM LlhA.RPY input/output, there is a predefined

package in the Ada program lJiLrary
The concept of a program ii- that contains a tet of input/output

brary is very important in Ada. The routines. The routines in this

program library is simply a collec- package TEXTIO are only accessible

tion of information on all compila- to those programs theat explicitly

tion units, or program parts, that tie into this package. In class,
* have been compiled into a library, you'll see how we do this.

This is important in Ada because the

language allows you to separately $U4A¥y
compile parts of the system that are
in different files. When compiling Ada is a language designed for

a prog-in u.n:t, th.., compiler hAs engineering softwart systems. It

access to a record of evcryLhi-'g directly supportc thk: g$,.is e:.i

else tha: has been compiled up to principles Adentified for ,nzwnare

thiq point. This powerful feature engtneering. It's a co-,'.t: Ian-

enables the com.piler to enforce its guage with many integratei fea-

visibility and strong typing rules tures-features that you will find

across program unit boundaries, very useful by the end of the
course.

SIMPLE CON7O!. ST.UCTUP.ES

Ada has a tu.-i.her of control MYRCISF. 3-1

we'll cover some simple control Note* Some of the mmterial needed
structures such as assignmnnt, If, to answer the following questions is

and loop statements. These will al- only covered in the lecture.

low you to begin writing simple Ada

programs. 1. What is "a6s:ration-?

S1 ,PI'E LNP.JTT11':I,;T1?,UT

guse-, ycu hav.." to keep in mind th.:
application for which it was it-

sign.,d: embedd:ed computv.r systermts.
These are srteris whore the cimputtr 3. r'ame thc tw-, parts oi a ;.ra.r

i% only a3 asnl" part rE. it control; uni t.
tle rest oa the sy.irem, such as the
con•ritter that controls Owh, ig'nition 4. Types an,,d oj",.cts are. Jecl.irv-_

sy*;tem in, your car. These ombedded in thu __ part of a

systes. typically have small memory program unit body.
sp-ice and unique Input/output re--
quirements. because of these re- 5. What is a package?

quirements, th,- l,%nu.4u-•g- designers
chose not to make textual input/

outpt: itint'n•i• t• Ad-&. This wiy, 6. How do etv'-'riý pro.grna uanits .id

,.., c.:. e •'; .~ prugrams tha: in ret-':;bilitLv

03-3

' tAWUL 3-1

,-- Abstract: This program computes the area of a triangle. It. first 2
-.- % prompts you for the length of the base and the height of 2

the triangle, then prints out the area.

-- Author: John Doe

-- Z Date: 19 Oct 87
-- 7,

with TEXT 10;
procedure COMPUTE AREA OF-TRIANGLE isL

MAXIMUM LENCHI : constftut :- 50;
ONE VALF : constant :- 0.5;
MlEXt-' AREh&. : con',stkant := ONE HALF *

(MAXIMUM LENGTH h AXIMUM LLNx:#T1u);

type LENGTH TYPE Is rane 0 .. .MtXI.M.LENGTH;

type AREA TYPE Is digi:. 10 range 0.0 .. MAXIMUM AREA;

ANS'WER: CHAP. ACTE•€ :- lY ;

package AREA TO) is now TEXT ICFLOAT I3(AREA TYPE);
S...... , IK i ne0 TEXT 0. 1,0TE _ O(LENGTH TYP:);

-- (:~r .,i~ Lon naxz rbage)

3-4,

begin - COKOMTEAREA~OThIANCLZ

loop

TEXT 1O.PV'T LIhN(This proerAm calculates the aim, of a");

IO.?U1~E~"triatille given the leng~th of itg base")-

TEXT lu.PV7("FN.E! THE LENGTH OF TRF. WAE (MUST BE AN INTECEP. E!EWE-EN),
L~s#NGTI1 t. PU-(LENT TTYPE'FIRST);
TEXT IO.PVT"(AND)")*.
LENGTIIio.puvr LENnTH TYPE'LAST)
TEXT 10.1IM'": ");

LENGTH-IO.GET LENGTH OF-sAn~

* ~~~TEXT 10.PI~T("TNER TH; HETGRT (MVST BE AN INTEGER~EN:E:)
LSN~GuTF...PUT(LE4C TH-YP` FIRST);

L .. GTI- IO.GET(HEIGHT)

AREA :a ONE HALF * ARLA TYPU(LF.Ncr OF BASE) 'AREA TYMH"Gi'lt;

TEXT I0.?1UT(Th---;- k7F.S OF THE !TRANCLE IS:)

TEXT iO.N~wL'P-N1I.;
TE fIO.PUYD YDO Uu WA\-,' TO TiV;' ANU'rhr.K? tl OK N~)");
TEXTiO1.GEV(ANSIIbER);

exit wihen ANSýýEK u N' or ANSwER In'

end, loop-,

3-5

MMICISS 3-2

1. Los on to the computer with your correct user name*
2. Enter tho program below using the editor,
3. Compile using the Ads compiler.
4. Make any corrections needed to fix errors.
5, tun your program.
6. When you have finished, call the Instructor to evaluate your program.

-Z Abstract:. This program computes all of the prime numbers up to some
-- 2 value MAXIMUMMUNMRS, 2

-Z Author: John Doe

-2 Date: 18 Sep 87

vith TEXT 10;
procedure SIEVE in

MAXIMUM NUMBERS : constant :- 500;

type NUMBER TYPE is range I ., (HAXIMUUMN UMERRS + MAXI'tUMNUMBERS/2);
subtype PRIME RANGE is NUMBER TYPE range I..KAXIKUM NUMBER;
type BOOLEAN ARRAY TYPE Is srrmy (PKIME RANGE) of BOOLEAN;

NUMBER : NUMBER TYPE :• NUMBER TYPE'FIRST;

PRIMES : BOOLEAN ANRAY TYPE :-"(others -0 TRUE);

package INT 10 is new WiA'>jOoINTEGER 10 (KUMBEK-TYPE);

begin
for COUNTER to NUMIBER-TYPE r.inge 2..PKIMLS,•'LAST / 2 loop

NUMBER := COUN'TER * COI?1TKR;
while NUMBER <= PRIMES'LAST and PRIMI (COUNTER) loop

PRIMES (NUMBER) := FALSE;

end loop; -- vhle NUM
end loop; -- for COUNTER

TEXT 10.PUT ("The prime numbers from I to ");
INT ,IO.PUT (PRIKES'LAST);
TEXT IO.PUT LINE (" are:");
foL INDEX i7 ?RIMES'RANGE loop

if PRIMES (INDEX) then
INTI0.PUT (INbEX);

and if;
end loop; -- for INDI.X
TEXT IO.NEW LINE;

end S I EVE;
3-h

Chaptet 4

IASIC Ada MTPS

0IJICTIVI objects of that type. Also, ve
can't implicitly m*I objects of dif-

Given a simple program speS- ferent types. Ada supplies some

ficatlon, an incomplete Ads program, predef1ned types such as INTIEGR,

student instructional materials, and CIARACTIR, and FLOAT, but more In-

student notes, add the correct port.ntly, it gives us the capabil-

types-objects to -the programuto cor- Ity. to declare now data types to

"rectly Implement the problems Pro- model our own abstractions.

gram must conform to course softvare
engineering standards. Instructor Type Dec.laratieon

may provide up to 3 assists.
-..............-- ype and object declarations

can be declared in the declarative

IEr'OWC'rIOK part of any program unit:

What purpose does It serve to procedure MAIN is

say that a variable is of a certain - Declarative part

type, or class of objects? First,
it tells the coupiler how to treat a type AIRCRAFT is (51,352,F16);

series of bits. For example, adding
two Integers is different from add- begin
ing two floating point numbers. null;

end MAIN;

u. t data typing helps software
.engIneere also. It allows them to In the above example, the type

-ss•3gn logical properties to an ob- declaration begins with:

data abstraction can greatly in- type ARCRAF

crease the understandability of a
program. For example, If we need to ALL now type declarations begin this

keep track of the days of the week, way, with the word 'type' followed

it is much more understandable to by the type name followed by the

refer to the days as MONDAY, TUES- word 'is'. Whatever comes after the

DAY, WEDNESDAY, etc. as opposed to word 'is' defines what class of type

numbersi ft~iaw I to 7 (vt w-b It ^W to ~ nr t llitg
6?).

Object Declarations

DIWOMNATION
The above type declaration

". STROQ TYPING only defines the characteristics for
objects of chat type--the set of

In the last chapter, ve de- values (31, 152, P16) and a set of

fined strong typing to mean that operations. In order to Set any use

every object has an associated type; from a type declaration, we need to

this type defines the set of values declare an object of that type:

and set of operations available for

iO A-i

• ...-. -. *d.m~~l m m J .-.... -- ' " Z I __2 • . . . i ,, - ,

procedure MAIN Is Other Types
- Declarative pert

The other kinds of types we
type AIRCRAFT is (319352,0M6); can declare in Ada are:
PLANK : AIRCRAFT;

o Access Types: The objects are
begin pointers to other objects,
null;

end MAIN; o Private Types(The operations
on objects of the type are only

Nov we have an object called PLAN& those that are explicitly
whose value can be 3I1 152, or 716. stated,
The operations we can perform an
PLANU are those available for the o Task Types: The objects define
class of enumeration types which a parallel process.
we'll discuss in class. " SI

c~sum oF 5TYES
fThe strong typing rules in Ada

The types we can declare in require that every object be asso-
Ada fall into one of the following ciated with a type. The type de-
classes:- scalar, composite, access, fines the set of values and the set
private, or task. of operations available to the ob-

jects of the type. Ads allows you
Scalar Types to declare your own types to set up

abstractions of the real world and
The objects of a scalar type make the solution more understand-

only contain one value at a time. able*
Type AIRCRAFT in the previous ox-
ample Is a scalar type because at ain18 4-t 1
any point an time t yPeN can aontain
only one o the values I, B152 or Note: Some of the material needed
F16. to answer the folloving questions is

only covered in the lecture.
We can break the class of sca-

lar types into integer, anumera- 1. Define strong typing.
tion, floating point, and fixed
point types, which we'll cover dur-
inS class. 2. The two kinds of composite types

are and •
Composite Types

3. A type defines a set of
Unlike objects of a scalar and a set of _ ..

type that can only contain one val-
us, objects of a composite type can 4. What is the difference between a
contain collections of values. Cor- constrained and an unconstrained
posite types am be arrays, where array?
all of the components in the col-
lection are of the same type, and
records, where the components can be 5. An array Is a collection of
of different types,. __ objects while a

record ts a collection of
_...... objects.

4-2

mumim 4-2

1. Add the type and object declaratione that are called for in the following
program shell

- Declare an Integer type called YEARS that ranges froe 1900 to 2500.

- Declare a type mined CAIýJNNS that contains the values DODGE, FORD,
. lOTWIAC, 1LUMhOU , MRUq, anid MVT.

- Declare a type nsaed COLORS that has the values RED, SILVER, BLUE, BLACK,'
a"d YELLOW.

- Declare a record type called CARS with the following components: YEAR of
type YEARS, COLOR of type COLORS, and MAKE of type CAJMIAKES.

- Declare an Array type named USED CAR-LOTS that can contain 50 elements of
type CARS.

- Declare an object named DANS USED CARS of the type USED CAR LOTS.

boi

maul
e.d BUY USEDCAR;

44-3

M~WaL 4..1

-2 Abstract, This prqram computes the average of student's test X
-I scores for an entiti class. Each student has three test Z
-- scores and the number of students to given by the number 2
-- declaration, The avertge is the total average ok all I
-- testa by all students. I--z
-2 Author: Max Programer

-'Z Dates 19 Oct 07 2
-Z %
-xxZZZx2ZZE•xxZUxZZ-J•U•XZZXZEZZ222XZZZZUIUZZZZZZZZZhZzzxzu2zxzZUz2

vith TEXT to;
procedure AVIrAOUSCOUS is

HAX SCORE I constant :o 100.0;
NUMBER OfTDElNTS , constant to 10;
MNIn3rOFTESTS : constent t- 3.0;

type TBSTSCORZ TYPI ts digits 5 rtnge 0.0 .. MAX SCOE;

type STUDENT TYPE Is range I .s NU ErOt ir STUDEZNTS;

type SCORES RCORD to
record

FIRST TEST : TEST CCOSE TYPE;
SECOd TEST % TtSTScCOE TYPE;
THIRD TST : TEST SCORETYP&E;

end record;,

type SCORE LIST TYPE is array(STUDENT TYPE) of SCORES RECORD;

SCORES : SCORE LIST TYPE ze (ott~ra -> (0.0, 0.0, 0.0));

I NDIV IDUAL AVERAGE,
TOTAL AVERAGE : TEST SCORE TYPE ,- 0.0;

package STUDENT 10 to mao TEXT IOINTU MRIO(STUDUrT TYPE);
package sCOU3 Iz s mem TEXT o 7, ATJO(IT0.CORtP)

(Continued on next page)

'-4

begin - AVERAGEJCORES

for STUDENT in SCORES'RANGE2 loop Get test data

TEXT 10 *PUT("STDENT UMBER:)
STUDENT IO.Pm(STUDENT)
TEXT IO.NEW LINEC 2;
TEXT I.PUT(P6IEsT TEST SCORE:);
SCORE IO.GZT(5003ES(STUDENT) .FIRST TEST)
TEXT IO.PUTrSE9COD TEST SCORE: w)-,
SCOR IO.GZT(SCORES(STUDEN). SECOND TEST)
TEXT TO.UT("TIIRD TEST SCORE: 0);
ScoRE IO.GET(ScoRs(SUDlTw) .uInTEST)

end loop;

for STUDENT In SCORES' RANGE loop m~Compute average

IN1DIVIDUAL AVERAGE to CORES(STUDENT). FIRST TEST/NUMBER OF TESTS +
SCORES(STUDZNT) .SECOND TUST/NMMER OF TESTS +-
SCORES(STUDENT). TKIRD YiST/NIJMER OF TESTS;

TOTAL AVERAGE I- TOAL AVERAG + INDIVIMUAL AVEPAGE/
TEIST SCORE TYPE(SCORE'LENGTI;

TEXTlO. VUT(STUDENT NMMER:)
STUDENT IO.?UT(STUDENT)
TEXT O.ePUT(AVERAGE IS:")
SCORE IO.PUT(IKDI VIDUAL AVERAGE);
TExT Io.NEV LINE(2);

and loop;

TEXT IO.PUT("CLASS AVERAGE IS);-Print average
SCORE 10. ?UT(TOTAL AVERAGE)
TEXT IO . HZ LINE;

end AVERAGE SCORES;

4-5

Chopter S

OJBUcris ability of a program. It's useful
in structures such as a case state-

Given a program specifica- Sent where you want to do nothing
tion, an incomplete Ad& program, for a speciftc path of control.
student instructional materials, and
student notes, use the appropriate The block statement is much more
control structures to correctly UP- exciting. It allows us to localise
plement the problem. Program mat declarations, kind of like creating,
conform to course software engiseer- a little declarative part within !he
ing standards. Instructor may pro- sequence of statements of our exe-
vide up to 2 assists. cutable part. The block statement

also lets us localize the handling
of certain conditions that occur

Juwrtau during the program's execution, as
we'll see in a later unit on excep-

Control structures 9 or state- tions.
ments, define the flow of control in
the executable part of our program COUITIONAL UOWML STDCTUIBS
units. These define the steps the
program unit goes through to get its There are two kinds of condi-
job done. Of all the control struc- tional control structures: the If
tures available, we can break them statement and the case statement.
up into three general categories: Both of these statements branch to a
sequential, conditional, and itera- sequence of statements based on the
tive. value of some condition.

wrln M iMON The. if statement branches on a
boolean (TRUZ or FALSE) condition.

SMJWfAL €UrtROL grmnirtMMu If the condition is- true, the en-
closed statements will be executed.

Sequential statements are per-
formed one after anotler. Three if STOPLIGHT a RED then
sequential statemsnts that we'll STOP;
talk about in class are the assign- WAIT;
ment, null, and block statements. GO;

end if;
The P"iSmuent statement simply

assigns a value to an object. It The if statement can also have an
sounds simple, but there's a catch: 'else' and/or 'elsif' part to fur-
the objects on both sides of the ther define the floe of control, as
amignmeut statement have to be the we'll see in class.
sa typa. (Remember strong typ-
Ing?) The case statement branches

based upon the value of some dis-
The null statement does nothing. crete object. Instead of having

Just like a page that says "THIS just two alternatives, as with the
PAGE INTENTIONALLY LEFT BLANK", a if statement, the case statement can
null statement can add to the read- branch to a number of places based

on the value of that discrete ob- We can change the characteris-
ject. tics of the loop by adding an itera-

tion schene. A 'for' loop goes
type LIGHT is (ID, YJIM, G*M); through the loop once for every val-
S• PLIGHT : L1QU. GP; ue in a given range.

begin for INDEX in i..10 loop
PUT LTNE(C"ello!");

eme SMWP LIGHT Is end loop;
udm Qi4 ->

IMýP2ODG; This for loop would print "Hello!"
OMGAS; ten times. A 'for' loop should be

Wuh 126.> used whenever you know how many
MWIP; time you want to go through the
WKlT; loop.
GD;

whme fULOW a> A 'while' loop lets you go
GOUM=1W through the loo- while some condi-

end case; tion is true.

ITRATITVE CONTROL STRUCTURES while STATUS , RUNNING loop
CHECK TEMPERATURE;

Iterative control structures, or CHECK FUEL FLOW;
loops, are all based on one struc- end loop;
ture in Ada: the basic loop. This
loop is structured to loop forever. This loop would execute until STATUS

is nn longer equal to RUNNING.
loop
D0DSOM ; SUMMARY

-If you wmt to exit tram the loop: Ada, like other languages, pro-
edit; vides the three classical kinds of

ad loop; control structures' sequential, con-
dittanal, and iterative. With these

We can exit from this basic loop classes of statements, all algo-
only thrnugh an exit statement, as rithms ¢.tn be wrLtten.
showni ab•vo.

5-2

I. Complete the following subprogra.-

-22222122%Z2ZZ22222222Z22Z222222222zzzxz~zz~zzzxzzzxzxxXZ22Z2%X
-2 2
-X Abstract: This exercise requires you to enter the code to perform I
I the actions described in the comments below. 2

I. Author: Max Programme 2
-2 2
-2 Date: 19 Oct 87 2

-1
1 4

-- zzz•zXzzzzUXz%%%Z%%%%%ZZxzzZ•z•zZ %Z•szz t%%ZxZU x•z~zxtx%%Z %%%%%ZZZ•Z

with TEXTtO;
procedure COiTROL YOURSELF is

MAX NUMBERS : coustant :- 500;

type NUMBERS is range O..*MAXNUMBERS;

type COLORS Is (RED, WHITE, BLUE, GREEN);

type AURRAXTYPE Is array (COLORS) of NUMBERS;

MY ARR ARRAY TYPE :t (2,46,12,38);
TOTAL : NUKi-tS 0;

package KUM 10 i mew TEXT1O.•INTG9 1O(NUMBERS);

begin - CONTROL•YOURSELF

- Add the components of the array together and put the result tn TOTAL

- If TOTAL is between I and 50 then add 5 to the TOTAL
- If TOTAL in between 51 and 200 then add 10 to the TOTAL
- If TOTAL is between 250 and 300 then subtract 10 from the TOTAL
- If TOTAL is anything else then set TOTAL' to era

- Print out the result

and CONtROL YOURSELF;

5-3 *

Motoer 6

so. -

OajM the subprogram is implemented.

Given a program' specifica- Specification:
ties, student instructional materi-
also- and student notes, use subpro- purue MIJ)OWAE;
grams to correctly implement the
problem. Program muat eat or. to Bodys
course software engineering stan-
dards. Instructor may provide up to M"h U0IW; - To gaa omae to
3 assists. WW IfTqDUt/ m• mno

Pu~~u FRMDIrjffC In
C11ON -- DMattive Pot

bqla
Subprograms are the primary - DMAabO Pot

means of defining abstract actions CID.IoJWAJo");
that take place is our system. For ed WI= f NKO;
example, when we call the addition
routine to add two uambers, we don't As shown above, the body is also
concern ourselves with the steps divided into two parts: the declar-
that take place to add the numbers- ative part. where we can declare lo-
only that the result is correct. cal types, variables, or program
The same applies to routines that we units; and the executable part Where
design: smeone who uses that rou- we define the steps to be executed
tine can concentrate on what the when the procedure is called.
functiou does rather than how It
works. If we had a program that needed

this routine, we could call it from
Subprograms aid our design ef- that program:

fort in that we can break up the
large system into smaller, more us- %dth F01tLIWMt ;
derstandable pieces and use subpro- procedure is
$rams to implement some of the
pieces* -bei

MnRI PLW ; C- al to XGmOwn
inq Tn e MVOnad FRnLI _ Iw

There are two forms of subpro-
gramw in Ad&: procedures and func- PFAASEM
tione. Procedures are used to in-
yoke sowe action, while functions With the previous procedure, we
are used to c=mpete a value, couldn't tell it which name to

print-It Would always print "Jone.
toIn order to communicate' with this
procedure, we need to set up parene-

both procedures and functions tere to pass data to it:
have two ports: the specification
which tells WAT the subprogram Imwe Pin S8aa M);
does, and the body that cells HOW

.. _.0.

Now when we call the procedure, we with OMD ;
sust also pass a value to it of type podue DEUZ I1T Is
STRING to match this parameter NAM*.
The body would look like: IMU : Drin4

with 'lq 10; ein -- nMMZIT
procedure FRIPRDNAMENAM : In few to MIDASZ();

SMI3) Is - ULThuIs a valum of 10.

begin W~ IDM IT;
UOW0.Mu(NME);

O PErWam ;May

To call this procedure from our Sain Subprograms provide a tool for
program: defining functional abstractibns of

our systems Like other program
with IU 1•OW/; units, we can separate the WHAT .
prooMuh•om 4 (Specification) from the NOW (body).

Ada gives us two forms of subpro-
begin -- NM grams, procedures and functions to

MWI W T W•"Jo"e); represent actions or calculations.

and Ita;

EIgRCISI 6-1
In class you'll see the differ-

ent modes allowed for parameters to Note: Some of the material needed
pass data into or out from a subpro- to answer the following questions is
gram. only covered in the lecture.

FUNCTIONS I. What are the three modes for
procedure parameters?

As we said earlier, a procedure ,.
performs some abstract action, while
a function computes a value. We 2. The only mode allowed for func-
reflect this in the syntax by adding tion parameters is .

a 'return' clause to the and of the
specification indicating the type of 3. Define:
value returned: a. Actual Parameters

funmtio ca (KHM• : IM

b. Formal Parameters
When we call this function, it will
return the computed value to the
point where It was called. There-
fore, we can only call a function as 4. Now do subprograms support ab-
part of an expression. We can keep straction?
track of the result by assigning '
to a variable:

5. How do subprograms support modu-
larity?

6-2

mis -2

S1. Re irite the subprogram below Into one main subprogram and three embedded
subprograms, Use subunits to place the subprograms In a separate file.

2. The main subprogram will simply call the first subprogram to prompt for
and get the name* The second subprogram will count the number of 'S's in the
same. The third subprogram will echo the name back to the user.

3. in the body of the main program, call the subprograms in the order listed
above to get a name, count the number of 'S's, and print echo back the name
and aumber of 'W'S.

-Zz2ZZzXZ22t222222zz zz fl2zz2xn Z212222222U22x2 2x2222222222tZ22XZZ22
*-2 2

-2 Abstract: This program reads in a name, counts the number of upper 2
-- case '8's, and echos back the same as well as the number 2
-Z of 'S's in the same.
-- 2
-% Author: Sleepy %
--
-2 Date: 14 Jan 76 2
-2
-22-2%%22222222X2ZZZ222222ZZZZZZZZZZ22222z zzzzzz2zzz22222222222Z2222222

with TEXT.0;
procedure WHO NAME it

MAX LENGTH : constant :a 80;

subtype LINE TYPE is STRING(1.,IAX LENGTH);

type NAME TYPE is record
CHARACTERS ; LINE TYPE;
LENGTH : NATURAL;

end record;

-- Make your declarations here

begin

H- ake your subprogram calls bere

end WCHONAME;

'-3

-:2zzzzzzz~zzzzz~zzzxZ~zzZZZIZZlZlZZZZIZ:IZZZZZzZzZIZZZZEUZZZZZIZXZxZ2%ZZI

-2 Abstract: This program implements the famous Humpty Dupty2
-2 Author, algorithm.2

Ato: sneezy2
Z

-2 Date: ISep 80
-I 2

-Xzzzxzzz zzzxhzzXz2yzzzznhhhzzzhI22zzz 222 ZZzzx2 22222 2222222%%222222

procedure NOTII3ROOO Is

10AX EG HEADMDNSS i constant to 10;.
NAXCW31r: constant :- 50;
KAtIIORSES :constant to 50;-

type EGG HEAD Is range I..HAX EOGGJIEADDIDNESS; -Degree of aggheadedmas.

type MEN to range K.KXEN;

type HORSES Is range I,*WAX HORSES;

IIUMPT DWQPTY : 8GQ HEAD t: 7iALL KZRS HEN : HE1E I~
ALL-KINGS-b0RStS : HORSES IS 1;

procedure SAT ON WALL (PERSON : in out EGO-HEAD)

Procedure' HADGREAT WALL (PERON : in out EGOHEAD)

procedure GET0OT WUALL (PERSON *In out EGG HEAD

function CAN PUT TOGETHER _AGAIN (PERSON : in EGGCHEAD;
NOW MANY : in KEN.
HowVMANr : In NIiOR&s)
return 10OOLAN;

-222221112222222222%ZZZZZZXzxZZz%%Z222222222222222U22222tt%%Z

-2 Abstract: This subprogram sits a person on a wall. 2
-2 %
-2 Author: Sneezy 2

-2 Date: 1 Sep680
-2

procedure SA0T OVALL C PERSO t to out MO HEAD toi

begin - SAT ONLWALL

en; SAT ON WALL;

'-4 @

-ZZ2 Z7u2Zh2222Z22Z22Z22Z222222U2z2z222222z2z2szZZxz2222222f
-Z I(O-4 Abstract: Thinsumbprograa gives you a great fall.* 2
-z 2
-2 Authors Dopey I
-z 2

-2 Date: I1Sep680

procedure HADJSUIATALL (PERSON t In out ICOJUAD) Is

begin - UADILAL

end UADGUATYALL;

-ZzzznzI22222 z22222U2211 xzzzxuntxn2zzz222tzzzz~f22222

-Z Abstract:- This subprograms gets a person off of the wall. 2
-2 2
-2 Authors Sleepy 2

-2 2
-2 Date: 2 Sep 802
-2

procedure CRT OVFWALL (PERSON s in out ZQCCHEAD) Is separate;

-2 1

-Z Abstract: This function determine* it a person can, be put back 2
-2 togetbert gives a number of HMN aOW NOOIS. %
-2 2
-Z Author: bee:, %

-Z Date: 1 Sep 60 2

-2 2 2 2 ZXZZzZZZZ ZZZZZl~zzxzh2zuzzzz 222zzzzlz222222~zZ2%Ztz

'anction CAN PUT TOGETHER AGAIN (PERSON i In 2CC RtEAD;
now MOANY : in NINET
HOW MOANY : In HOBSI)
ret~urn sOOLSA is separate;-

* begin - NO'IUUkGOOSE

SAT ON WALL C RwT! UHF?!
UADCE&T vUL (EW? V'bIrmom!
if to My 200nuuuaj.AT (UWT!UWT!, ALL KINDS "ENO

oIT OffIL C MHPTucomT)

end MOHETRIGOOSI;,

6-5

capt~er 7

oa nyx m-y be placed in its ova file and
compiled all by itself. Inside the

Given a program specification specification we declare the types
student instructional materials, and and program unit specifications of
student oatos, use packages to cor-- the entitioe we want to e"port to
rectly implement the problem. Pro- other progrem.
arm must conform to course software
eagineoring standards. Instructor phW ME I lMUIS Is

my provide up to 3 assists,
t" OMw is (04, OW);

I Omflt OU tya OWMU Is =Wu 2.Lo;

A package to one of the most gypeTV is
powerful tools in the Ads language* teooud
It allows us to define a more mean- PIEAS : SVOUS : Now;
ingful structure to our software. A IV W• . : OWHN - 2;

. package is defined as a collection cd ;
of logically related entities, such
as types or subprograms. This tool I ne IIR4J3(Sif : in oust M);
allows us to directly implement pmas Ii• OWF(S : in at rl');
principles of software engineering 11 sCo Iemwr i In *a Tv;
such as modularity, localization, 10 lncVW'
abstraction and information hiding. pIdr i awgT leuu t a t in 7au) I7

In OMVMV Ud lUAMfsRIN ;

A package Is like the other In this package, we are modeling a
program units in that it consists of television. Our TV is defined as
a specification and a body* The having a TV STATUS and a current
specification gives the logical view TVC;IIAAWEL, What can we do with
of MHAT is In the package while the this TV? We can turn it on, turn it
body defines NOW these features are off, or change the channel. In this
Implemented. This separation of single package, we have defined our
specification and body (the WHAT logical view of a television set.
from the NOW) is the key to engi- The package allows us to implement
neariug understandable and saintain- object abstraction by grouping the
able code. type TV and all of its operations

together in one package.
SPUECinIcO

We ca now mse this TV model in
The specification of a package program we may write:

7- @

withIWKLUIUdA; implementation details (body) won't
PUEt, WiIcaLiws to affect other programs, as long as

the Interfarce (specification) ro-
w WIH : DISILOO S.W; maine the same.

procedure W= ~TV In separat Peckqe body 7CMSIGL.E Un
function SLPCS ratum 3CMZAN

Is speaw; PUN&=m AO LOKSUT : in out IV) in

b"n -- WMLA N M bqen -ION C
W.%sm -1lJS. ON;

*AUe rct Isms IMop id 7M ON;mv~r~w I.m • aweu.(ifj~3f)I
d Imp;

Piumanue IMW F(r In ao TV) is
vW= lV;-

and WOKjyM S;O Zr.TVJI9=3S:- OFF;

The f Arst line of our program is a
"context clause". It gives us ac-
cess to everything that is declered procedure SLTOWIL(S.%.T : In out IV;
in the package specification. No- 10 : In IAI4.)is
tice how everywhere we refer to any-
thing out of the package, we preface Wn -- SI OI ILL
it with the name of the package: =.IV NOW :- In;

end wr -w2;
MY SONY : TZLIvzSION SsTV;

This helps out the maintenance pro- promdure NWT C0NA
grammor locate where type TV Is 1o- (Se : In aut TV) is
cated,

begin - N=CNM
aT Er.TV OWUM :0 SUM.TV CANE 1;

The specification gave us the
logical view of what was in the aid MVISI(N W-I;
package. The body defines the im-
plementation details of what is de-
clared in the package specification. PRIVATI TTPZS

When a main program uses a If wv look back at our package
package, it only has access to speclficatLon, you'll notice that
things declared in the package programs that use this package have
specification. Therefore, anything access to the details of type TV.
defined in the package body chat In many cases we my not want this.
isn't declared In the specification To support the principle of Informs-
is hidden from the main program. tion hiding, we would like the abil-
This concept directly implements the ity to hide the implementation. of
principle of Information hiding* this type as well. Ada alloys us to
This tends to make programs more hide these details through the use
modifiable because changes to the of a private type:

7-2

""e =NP=LP is by making type TV private, we deny
other program units the ability to

typs OWU is w ,.000 access the compensate of a T,
be these components my shagea

IV is l'VMUldl, Cmdlriw mso, other program units won't be
affected because they are still

PeOs'lIULCI:R Us ieTV); forced to manipulate the TV only
Iugen.Ige OW(I S inuA W); through the operations listed in the
P1100060 = 00l I Is on T/V1 package specification.

I0 I In GMMIli

poudsue IM WWU I Ins KA TV); Insde he packase body hewew-
of, the coder hbe full access to

tVOISV, TWIUNO defined in the specifics -
tiens, including private typee,

tyme IM (Cs, lP)l Therefore he can refer to the compo-
nents of objects of type TV. In

typ• Wis essence, out package body would re-
red "la the gaoe as it was when type TV

W 11 I IM to Owl ueen't private.o~ we. ,- 3; .
~t itud JWIR

adUJZIS=..PW; Packages are a very powerful
toot that directly support spiy at

Nov other program can only access the prtnciples of sottware engineer-
anything In the VZSISI part of the In,. The sepcification provides the
package: that part before the word abstract view of the collection of
private. hetween the word private resources% whole the body hides tO ,
and the end of the package spociEt- details of their Implementation.
cattin is the private part vhere we can use the package to -break up ou0 '0
deftin the ful1 type declaration, software system Into logically re-

lated, localised routines. This
When another program sees this added feature allows us to define

package, the only allowed operations new typos of abstraction, such as
for type TV are these also defined object abstraction, that aren't
in Lhe package specificatlons available in languages where a sub-
TUUINO, TulNOF?, SIT ClAML, program is the primary structuring
NUX? CANNI. lie can't even assign tool.
one object of type TV to another.

"7-3

Mae= 7-1

l. Modify the following program so that all the constant, type and subprogram
declarations are In a separately compiled package. The main subprogram should
declare the array object and make calls to the routines In the package.

-ZZZZZZZizz22zzzz2%zzizZZZZZZZZ2zZzZZZZZXZZzzz•izZZ iXZZZZ z::XZ%:z
-z z
-Z Abstract: This program gets a wowd from the keyboard, inverts the 2
-2 characters in the word, and prints It back out In its 2
-- inverted form. *

-Z Author: Joe Dynamite

-= Dete: Jul s5

-• •UZ2U2X222222222ZZZZZ 222ZZZZzzz2z2z2zz2 ZZZ2ZU2•22Z 2U2%

with TEXT 10;
* prcdure--IVICT ARRAY is

MAX NUN : constant :- 5;

smbtypeCAPITALS Is CHARACTER r .e 'A',.'Z';
type-• tTZS Is tr e 1..MAX
type CAPAiR to array (NUN...ITEMS 3 of CAPITALS;

VOR : CAP ARR;

procedure GET WORD (NEW WORD : out CAP ARR) Is

or INDEX In NEW V•OIR' ANGE loop
TEXT IOPUT(1 INPUT A CAPITAL LETTE);
TXT'IO.GET(NEW .ORD(INDZX));

and G•-TWORD;

procedure INVERT WORD (BACK WORDS : in out CAP ARR) to
TEMP WORD : CAT ARR;

begin
for INDEX in reverse BACK WORDS'IRANGE loop
TEMP WORD(BACK WORDS'LST - INDEX +1) :- BACK WORDS(INDEX);

emd Lo0p;
AACK WORDS :- TEP WORD;

and ItffERT WORD$;

procedure PRINT WORD (FOR WORD : Is CAP ARR) isbel:Ln "

or INDEX Rto FOR WORDRANGE leooTEXT IO.PUT(P'FM WORD(INDEX))
anid Iawp;

•semd PRINT WORD;

hegis -- INVERT AMY

GET•VOW(WORD);
INMVYT WORD(WOR)D
PRINT oRD(VORD);

mmd INVERT ARRAY;

7-4

(0I

*MKWI. 7-1

-Z Abstracts This package contains trig functions that work on the I
-2 predefined type FLOAT. It contains the traditional trig 2

-zfunctions, arc trig functions, anid hyperbolic trig 2
-2 functions* z
-2 2
-Z2 Authors: V A WHITAKIR AFATL 501.1K All FL 32542 %
-Z T C BICKOLTZ VIAFA

-2 Doate 16 JULY 1982 2

-Z-I

package TRIG LIS Is

function SINCI t FLOAT) return FLOAT;
function COSCI t FLOAT) return FLOAT;
function TAN(X : FLOAT) return FLOAT;
function COTCZ s FLOAT) return FLOAT;

function ASIN(X : FLOAT) return FLOAT:
function ACOS(X : FLOAT) return FLOAT;
function ATANCI : FLOAT) return FLOAT;
function ATAN2(V, V : FLOAT) return FLOAT;

function 3INN(X i FLOAT) return FLOAT%
function COSH(X t FLOAT) return FLOAT;
function TANN(X s FLOAT) return FLOAT;

and TRIG LiI;

package body TRIG LIS Is

function COS(X : FLOAT) return FLOAT is sepanrate;
function TANCI t FLOAT) return FLOAT is separate;
function CTA(X : FLOAT) return FLOAT is separate;
function ANCOM t FLOAT) return FLOAT is separate;
function ACSCIN a FLOAT) return FLOAT is separate;
function ATANCI t FLOAT) return FLOAT io separate;,
function ATAKI(V : FLOAT) return FLOAT to separate;,
function SINUCIq V FLOAT) return FLOAT is *eperate;
function COINCI : FLOAT) return FLOAT is separate;
function TAMICI s FLOAT) return FLOAT is separate;

end TRIGL1519

--- llllllllllllllllll~lPREIM•IN HARY VERSIONlllllllllllll

-Z:ZZzzzZZZZZZZZZZZZ %ZZZZZZ:
i-2 2
-2 Abstract: The following routine to coded with reference to the 2

S--algorithms and coeficients given In "Software Manual for 2
-Z the Elementry functions" by William J. Cody, Jr. and 2
-Z William Waite, Prentice Noll, 1980. This particular 2
-Z version is stripped to ýork with FLOAT and INTEGER and %
-z uses a mantissa represented as a FLOAT. A more general 2
-Z formulation uses MA1•ISSA TYPE, etc. 2--Z --
-Z Authors: W A VWIITAKER AFATI EGLsIcu AFI F32542 Z
-Z T C EICHOLTZ USAFA 2

* -Z %
-- Date: 16 JULY 1982 z
-- Z 2-- %ZZZZ~ZZZZ%2ZZZZZZZZZ%%ZZZZZZZ%%%%ZZ%%ZZZZZZZZ2Z22ZZZ2%%ZZZZZZZ2ZZ

separate (TRIG LID)
with CORE PUNCTIONS;
function TIN(X : FLOAT) return FLOAT is

Cl : constant FLOAT : 3 3.1,062%3
C2 : constant FLOAT : 9.6765 3597_933-4;
SGN, Y : FLOAT;
N : INTEGER;
XN : FLOAT;
F G
X1, I 2 :FLODAT;
RESULT • FLOAT;
YTAX • FLOAT :a FLOAT(INTEGEIK(CORE FUNCTIONS.PI *

CORE FUNCTIONS.Ti*OWA(CORE FUNC'TIONS. IT/2)));
BETA FLOAT COR-FU CTIC-NS.COYEKT TO-FLOAT(CORE i'UNCTIOS. IBETA);
EPSILON FLOAT : CORLFUNCTIOMS.I.TA **7-U _FUCT•NUS. IT,i2,

begin - SIN

if X < CORE FUNCTIONS.ZERO then
SON : -UOREFUNCTIONS.OKE;
Y :- -X;

else
SGN ". CORE FUNCTIONS.ONIE;
Y :0 X;

end If;

N : INTZGCR(Y * CORE FUNCTIONS.ONE OVER P1);
XN : CORE FUNCTIONS-ONVERT TO..LOXT(N)T
if N mod 27/- 0 then

SGN :- -SGN;
end if;

Xl :1 CORE FUNCTIONS.TRUNCATE(abs(X));
X2 .= abs() - X1
F. ((el - XN*Cd, + X2) - XNWC2;
if abs(F) < CORE FUNCTIONS.ESILON then

RESULT :a F;
(* -As.P;
G I- F I.
RESU1LT :- 9 * F*COE FUU•TIONS.E(G);

end if;
return (SGN * RISULT);

end SIN; 7-6

uZA~Wt 7-2

rnzZZz2ZZUZZZZZZZZZZZ2222 ZZZ~ZZ22222222ZXZZZzt zz22z 222zzzzzz222zz222z2 *-Z -|

-2 Abstract: This package defines a rational number type. The "
-2 following routines are provided to work with these %
-z rational nmbers: 2
-2 %
-Z NUMERATOR OF - Returns the numerator of the number Z
-Z DENOhINAfT OF - Returns the denomtnator of the number Z
-2 Na - Makes a rational number from Integers Z
-2 - Addis rational numbers 2

Subtracts rational numbers 2

Hultoplis rational nmbers z
"-" Divides rational numbers z

--2 DISPLAY Displays a rational number to ter*LnalZ
-2 2

-2 Author: Num burrs 2
-2
-2 Date: 23 Nov 85 -

-- ZZZZZZzzZ ZzzzzZZZzZ IZzzzzz Zzz2z2z2zZZZZZIZZZZZIZZZZZI22XZIZZ2ZIZU22

package RATIOKAL NUMBERS Is

MAX VALUES : constant :a INTEGER'LAST;

type VALUES Is range -KAX VALUES .. MAX VALUES;
subtype POSITIVE VALUES IT VALUES rtnge"l .. MAX VALUES;

-type NUMBER TYPE is private;

function NUMERATO OF(A NUMBER : NUMBER TYPE) return POSITIVE VALUES;

function DENOMINATOR OF (ANUNBER : NUMBERTYPE) return VALUES;

function MkKE (TOP : VALUES;
BOTTOM : POSITIVE VALUES) return NUMBER TYPE;

function "." (LEFT, RICHT : NUMIEK TYPE) return NUMSER TYPE;

function "- (LEIFT, RIGHT : NUMBER TYPE) return NUMBERTYPE;

function "*" LEFT, RIGHT : NUMBER TYPE) return NUMBER TYPE;

function " (LEFT, RIGHT : NUMBER TYPE) return NUMBER TYPE;

procedure DISPLAY (AWNUKBER : NUMBER TYPE);

private

type WUIB2Z TYPI Is
record
NUMERATOR : VALUES;
DIENOINATOR : POSITIOV VALUES;

end record;

end LATIONALNUKBKRS;

"' 0¢,

with MI.T 10;

package tGdy RATIONAL NSUMBERS Is

package VALUE-10 is new TEXT 1O.INTEOER 10(VALUES)

-2 Abstract: This function returns the nume.rator of the rational2
-2 number *2
-Z2
-Z Author: Num Burrs 2
-Z Date: 25 Nov 85 2
-Z 2

function NUMERATOROf (A_.NUMBER : NUMBER TYPE) return POSITIVE VALUES Is

begin - NUMERATOR OF
return A NUMBER. NUMERATOR;

end NUMERATOR OF;

-ZZ2ZZZZZZZZZZZZZZZZZZZzzxzzzzzzZZZZZZZ~zZZZZZZZ2Z2zzzzzzz2zz22222222

-Z2 Abstract: This function returns the denominator of the rational 2
-2 number,, 2
-Z 2
--2 Author: Nun ýsurrs %
--2 Date: 25 NovS 25

-Z22ZZZ%%%%%z%%%ZZZ2222222 ZZ%222,L2222ZZZZ22222Z222222222%z22222Z222

function DENOKINATOR OF (A NUMBER : NUMBER TYPE) return VALUES is

begin - DENOMINATOR OF
return A NUMBER. DENOMINATOR;

end DENOMINATOR OF;

-22Z22222222Z%Z2ZZZZ%222222U22222222222222222%ZZZZZZZZ2222ZZ Z% ZZZZ%

--2 Abstract; This function takes a VALUES and a POSITIVE VALUES and %
-% creates a rational number out of thqt-m. %

--2 Author: Num Burro %
--% Date: 25 Nov 85 %

--%ZZ%%ZZZZZZZZZZZZZZZZZZZZZZZ~zzzz2zz2ZZZZZZZZ22%%%%ZZZZZZZZZZ%%ZZZZzz2

function MWE (TOP : VALUES*,
BOTTOM : POSITIVE VALIIS) return NUMBER TYPEIis

begin - MAKE
return (TOP, BOTTOM)

end MAUE;

7-e.

-zzzzzzz:22222212222222222:22222122222222:22222222221222:z:ZZXZZIZ:222222
* -Z Abstract: This function odds two rational amsbers* 2

-Z Author: Num burro 2

Lunctio ".(LEFPT p RIGHT :NUMBERTYPE) return NUNSERTYPE Is

return ((LEFT. NWURATOR *RIGNT.0KNONINATOR) +
(LIGHT. NUKESAIOR * LEFT *DENOMINATOR),

LKFT.DERNOIATOR * 1IOHT.DENOKINATOR);
and '+";

-Z2ZZ22122 RZ2222fZ 2Z 2222U2xz2xzzZ22zzzzZZ222222222ZZX2Z 222221zzz
-Z Abstract: This function subtracts rational nmabers. I

-2 Author: Noma Burros
-Z Date:t 25 Nov 85

function -(LEFT , RIGHT : NMWBER TYPE) return NUMBER TYPE Is
begin - -

rqturn LEFT (-RIGHT. NUMERATOR,RItG1T.DENOMINATOR);
and "-

-22Z22%ZZZZZ222ZZZZZZZZZZZZ22222222Z222222%%%Z%%%ZUZ22ZX2122%2%22
-2 Abstract: This function multiplies rational numbers. 2
-2 Authort Num burrs z
Z2 Date: 25 Nov 85 z

-2222222222222222222222222222222221222222222222222222Z%%%Z22%222 222222

function ~** (LEFT , RIGHT : NUMBER TYPE) return NUMER TYPE is
begin - 4*

return (LEFT.NUKEIATOR * RIGKT*NUMZRATOR,

end "**~; LFTr.DENOKIHATOR * RICIITeDINOMINATUR);

-1222222222122222UZ22222222ZXZZZZZXZ1222222222222Z22222122222222222
%Z Abstract: This function divides rational numbers. 2

-2 Author:. Nui Burrs 2
-2 Date: 25 Nov 85 21
-1%Z222%%%%%%ZZZZ122222Z2222222222222222222222222222U22222222%Z~

function I"(LEFT , RIGHT : NUMBER TYPE) return NUMBER TYPE Is
begin - I

return (LEFT.NUHERATOR * RIGHT.DENOMINATC)R,
LEFT.DENOMINATOR * RIGIIT.NUMELATOR);

end 1./";

-ZZZ222ZZ%22ZZ22Z22ZZ222222222212222ZzZZZZ1122222:zzz%%%%%Z~ZZZzzzzz:
-2 Abstract: This displays a rational number to the terminal. 2
-2 Author: Nun Burro 2
-2 Date: 25 Nov 85 2
-Z22ZZZZ%Z%Z1Z2222Z 22~%ZZZZZZZ2222 ZzZzzzzzzzzzzzz %%zzzzz22 ZZz

prcocedure DISPLAY (A NUMBER : number type)is
egin - DISMLAY

VALUE IC. PUT(A NMBINR.NUMBRATOR)
TEXT TOPUuT(N/7"
VAIIU IO.PUT(A IIMER.DBNOKINATOR)
TEXT To.NZ WELE;

end DISPLAY;

end RATIONAL NUMBERS; - body

Chapter S

0 nwra IAIWLING IRCIPTIOIS

Given a program specification, Uhen Implemented, an exception
student instructional materials, and handler sust be placed at the end of
student notes, add exception* to the sequence of statements in a
correctly implement the program* frame. A frame can be thought of as
Program met conform to course soft- any begin-and block, such as a
ware engineering standards., In- program unit or block statemmt.
structor my provide up to 4 as- The syntax of an exception handler
$lsts. to similar to a case statement and

looks like this:

with MCQ;
When working with embedded coar- Ir rI ' ts

puter systems, reliability of our
software Is a major concern. Soft- eX : nstant :W 100;
wars is a vital component control- type SOIS tos rnse O..MAX;
ling aircraft or missiles whose W SM0E : 11,P,;
failure can have disastrous results. pace 9UNLIO Is ney
In order to deal with error condi- 1ET OdN.1tIO(9U I);
tions, Ada defines something called
an exception. An exception is the hr--
name of a condition that is unusual
(an error). We can then specify, 1W O.IUbEnter test saom: ");
via en exception handler, what ac- 3=Of .ET(P MM);Stions we want to take when this con- W O . fWS * 2;
dition occurs.,

MUT MOM 0Mimn EO IO.I~A U• ->

There are a number of predefined I•Cr 1O.R•-(Invalid etry." &
exceptions in Ada. These are raised " Try agin.);
automatically whenever the associat- %kM M'71lAMr cm 0>
ed condition occurs during the exe- M'Sy=a :a ReX;
cution of the program. Some exam-
ples are CONSTRAINT ERROR (Raised end 1Tl1•;
when a constraint is violated, such
as when you assign a value that Is In this example, if the person en-
out of range to a variable), STOR- terinX data at the keyboard enters a
AGE ERROR (Raised when there is not 'b' when asked for a test score, we
enough memory left to continue exe- have an error condition named by
cution) or DATA ERROR (Raised within DATA ItROR. We say that the excep-
TEXT IO whenever you GET a bad input tion DATA ERROR ti raised and we go
value). To define what action to the associated. exception handler
should be taken whan these condi- to find out what action to take. In
tions occur, you con define an ex- this case, the message to try again
ception handler. will he printed,

S'S-I

0l

Likowise, if the multiplication aesigif a value to, it just names
results in an answer out of the some condition. See figure 8-1.
range for SCORtS (above 100), CON-
STRAINT ERROR viii be raised and Unlike predefined oxceptions
MY SCORE will be assigned HAX. where the code vas autoumtically

inserted to test for the error con-
If either exception is raised, ditLon, user defined exceptions re-

once the statements in the exception quire the programer to write the
handler are finished, control pass- code to test for the condition and
es out of the frame-you DO NOT re- raise the exception.
t mru to the point where the excep-
tion was raised. You can be cre- UNUUAUY
ative with block statements to
localize exceptions, a" you'll see Exceptions can be powerful tools
In the lectures tn handling error conditions that

occur during the execution of a pro-
U5m DWIUD iZr1M 8 gram. By using exception handlers,

you can write code that viii never
The exceptions in the example quit abnormally, unless a hardvare

above were. predefined in the lan- error kills the main processor!
guage. The Ad& compiler inserted Instead you can retry the operation
object code into the program to test that cause the error, try a differ-
for the conditions and raise the ent algorithm, restart the system,
exception. Ads also gIves you the or whatever action Is necessary in
capability to define your own excep- those circumstances. Ada therefore
tions. allows you to build in reliability

by letting the programmer, not the
The declaration of an exception operating system, decide what action

looks a lot like an object declara- to take in the event of an error
tion. Remember though that an ox- condition%
caption is not an object that we can

with GM CM tR= MC;
4oue1ay3TW is
• : onmtant :- 100;

PASSD1 : oiscmnt :a 70;

ty q- RS is rave 0...IKX;
suYype FAnIDC SC•R• is ia*S•' rnve O..PWINCT;

KY SMM : 001U
FXLDG : eception;

pckae _to IF 10 Is mw INm o Sm);

M= 1OJ.Jr("ter tt sore ");
SMMGIH SMO);

W9010 MILDC -
adll•

=ospcton

MJ iWad entry. Pleome try *,iin.");
whn FATIIC -0

'tf lO.RT("Stidmt faiLing");

aid TFM; -

@-2

Is Modify the following procedure to handle DATA ERROR condttions. Hake It
keep trying to get numnbers iuntil It gets two corret' unumbers.

-ZZZ 2zz222zzzzztz2z 2ZlZ2Z2222Z2ZZ22Z2 22z =2222f 2222221ZZ2

-Z Abstrect:
-Z 2
-Z Author:
-22
-2 Date: 2

-1~z221222222zzz2zzzzz222IZZ2Z2MZZ22222Z2ZX Z2z2xxZ222z2222222xxZ222z

with TEXT 10;
premirsADD NUMBERS Is*

MAX NUMBER -. constant : .1000;

type NUMBER TYPE to range 0. .NAXNUMNBER;

SPICONUjMBZR*

TOTAL NUMBER UUHIKKTYPE*,

package NUMBER 10 Is now TEXL1mOb 1NTEGERO(NUM&ER TYPE);

begin - ADD NUMBERS

VM)SERIO.CET(?IRST NUNE);
NUMBER O. GET(SECOOD NUMBER);
TOTAL NUMBER :- FIRST NUMBER .SECOND NUJMBER;

OW ADD NUMBERS;

6-3

IZKgqLt 8-1

-- zZZZZZXZZZz XZZZ zzX zzn2zxzzz2zxxtznn::znz2 22222%22222%22%222222 22SXXZI
-2 I
-Z Abstract: This package implevents an aircraft auto pilot. 2
-- The package contains procedures to: I
•- - Get the current altitude 2
-- z - Disengage the auto pilot 2
-2 2

-- Z 2

-Z Author: T • OWan
-Z Date: 22 JunG85 2
-22
-Z Propageted Exceptions: 2

-Z IHPUT ERROR - Raised when Incorrect altitude read z
-x TOO iTCH uEmROR - Raised when altitude too high 2
--2 TOO LOWERROR - Raised when altitude too low 2

-ZZXZXZZZZ2ZZZZZ2XZZZX22 22ZZX 222222222fZXZZ22222XXZZ222ZX2XZXXZZ

package AUTOPILOTPACKAGE is

MAX ALTITUDE : mestamt :* 100 000;
MICSA1EALTITUDE ,nstnt .- s0U0;
MAXSAIEA1ITITUDE : cuoitant : 80ooo0;

type ALTITIJDLTTPEC is range 0. .HAX ALT ITUDE;

inhPps 100 LOW Is ALTITUDE TYPE rmnge O..KIN SAFE ALTITUDE;

minh4yp O NGHK Is •.-TITUDE TYPE rame WAX BAPE ALTITUDS..HAX ALTITUDE;

piocedurs GET(ALT i out ALTITUDE TYPE);
promedure DISENGAGE-AUTO PILOT;.

- other subprogams declared here

- these aubprogrms will test for and
- raise exceptions declared below when

-- and where appropriate

4

00

INPUT 133I03 a exespe lm
TO0 hlUtORt ezeepeimo;
Too~n~ IIOJIoR : ezemptom;

end AUrTO PILOT PACKAGE;

5-,4

package body AMPOJILOTJACKAG Is

-ZZ:Z1ZZZZZZ ZzZZz2z22ZUZZZZZZZZZZZZZZZZZZhZZ2ZZZZZZZZZlZUZZZl2z

-Z Abstract: This procedure gets the altitude from the sensor. 2

-1 Author: To Gunn Z

-Z z
-Z Date: 23 Jun 88
-Z 2
-Z Propagated Izoeptions: I

-Z DWUIhUROI - Mained when Incorrect altitude read 2
-z TOO HIGH EIROR - Rlaod when altitude too high 2
-2 TOOLOU--IrtO - Raised when altitude too low 2
-2 2
-- 2ZZZZZZZZzZzIZZZZZZZZZZZZZZZZZZZZZ IZKZZZZZXzz ZZZZZZZZ ZZZZZzzz

procedure GET (ALT : out ALTITUDETYP?) Is

TEMP ALTITUDE : ALTITUDE TYPE :a 0;

begin - GET

- Code here to get T.NPALTITUDE from sensor
-- INPUTJRAOR is raised of incorrect type of data is received

If TI JALTITUDE in TOO LOW them

elalf TW ALTITUDE In TOOHIGH than
"lIne TOO 1101N EROR;

nd If;
ALT :a TW1P ALTITUDE;

end GET;

md AUTO PILOT PACKAGE;

iO6-"

-2 1
-2 Abstract: This procedure Is the autoptiot that flies the aircraft* 2
-2 2
-2 Author: To Gunn2

-I Date:6 23 Aug 66

vith, AUTO PILOT ?ACIAG91,TZXT 10;

NALuRISS : sistsst to 3s

ALTITUDE A WTQJILOTAMAGI.ALTZTUDIL.Ttfl .t 0-;

begin

for I I 1. l..AX TRIES isep Get the altitude

begin
A2JTOJIILOIJACKAG1GET(ALTITUDE)

exception
wbon AUTO PILOTPACKAGE. INPUTJOR 0>

It 1-37thea Rd Max of throe trios
raise;

end; - Blocki statement

en loop;

-The meat of AUTO PILOT will be here

exeption

wsen AUTO PILOT FACKAGL*INPUT ERROR 0>

AUTO PILOT.DISENGAGE AUTO PILOT;
TEXr1O.PUT(" ***** flISEUACING AUTO PILOT *0

TEXT £O.PU1(" ALTIMETER FAILED

3min AUTO PILOT PACKAGEsTOO HIGH ERROR 0>

AUTO PILOT PACKAGE DISENGAGE AUTO PILOT;
TEXT IO.PUf(- *** DISENGAGIN4G AUTO PILOT
TEXY-IO. PUT(- ALTITUDE TOO HIGH TO USE AUTO PILTWr);

wben AUTO FILOPACU.T60JLAtt ZROR S>

AUTO PILOT PACKAGE.DISMANAG AUTO PILOT;,
TEXCIO0.pUY(m *** DISENOAYNO AINO PILOT *e
TEXTJO. UT(AL6TITUDE TOO LOW TO USE AUTO MAW~);

end AUTO P ILOT;

Chpter P

O0JBfI CHAJACTER and STING? Why can't we
do the same for input/output of in-

1. Given a program specific&- tegers? ' Let's call our new package
tics, a generic, student Instruc- V9TltXT 1O and declare in It a PUT
tional materials, and student notes, routine for integers that looks
correctly Instantiate a genetic to like this s
solve the problems Program aut
conform to course ouft wsre eOMgSeer- I dwt IMM IAn Damn;

otg standards. instructor my pro-
vide up to 2 asisotS. If we have an object of type NTin-

GUt, we can then call this procedure
"2. Given a program specifica- to print it out:

tion, a generic declaration, an in-
complete generic body, student in- with NE•E 1 10;
structional materials, and student PeOmd; ftDirtM:1Mg to
notes, complete the generic body to
correctly solve the problem. Program KIM : DO= :- 22;
must conform to course @of tware en-
g1neering standards. Instructor may bVA - iMILMt
provide up to 4 assists.

Generics. ?he were mention of
the word makes otherwise gallant So far, this works fine. But
programers tremble. but Ads goner- as we want to do more in our
Ics are nothing to be afraid of. PRINTIJUNBEP.S program, we may have
Once you understand the significance to print out numbers of different
of strong typing, the concept of a types:
generic program unit is simplified-
even natural, with 1MEL M 10;

A generic program unit simply
makes a subprogram or package more type SqOE ts rawe 0 .. 100;
general so we can reuse It in dif- type lm is rave 0 .. 36;
ferent applications. In order to
more clearly see why we need gener- tor : D M :a 22;
ics, let's imagine the Ada language SM8 : W " := ON
without generic program units. SIDE : I= . 2-

IUVOI&TIbegin - FuMIL.0urn
Mn 1W IMO(SM --

"- uu =m •punum--insin
What if we took away the goner- 1StX-0,1fl(SlDE); -l~qinl

ic XNTiGER 10 package and replaced
it with a non-generic variety. Af- ad NlaIroInS;
ter all, don't we have non-generic
packages for input/output of types Remember our strong typing ruleal

9-1

These rules don't allow us to six Nere we've defined a place holder
apples and orangeme or INTI0o1s, called PUN to be the name of the
SCOUS, AND LSNITHs for that matter, type of item we eon pass to this
Since our PUT routine has its ITIM procedure. We call this place hold-
parameter declared to be of the pre- er a generic formal parameter. Nov,
defined type INTEGEI, ve can't pass when we need to print out an integer
it an object of type SCOWS or value, we can take this template and
LENGT, Without generics we would fill It In by specifying what type
have to declare three PUT procedures we went to take the place of NUNI.
In our N1(TEXT LO packaget We do this through a generic lnstan-

tietion.
pFumd- PUKM~ i In DMi);
F6S165S MR(in I in 1=18)g SRC INSTUl"L&ZZG
prgodm P u fi Ian UMa);

Once a generic routine is comn-
In fact, every time we declared a piled, we can make use of that sen-
new integer type, and we need to oral routine In different parts of
print out a value of that type, we our program or even in different
would have to declare a new proce- progreas. We just have to tell the
dures compiler what type we want to match

up with the place holder name we de-
This solution obviously is un- fined when we declared the generic.

satisfactory. We have three PUT If we again want to print out nun-
procedures that do exactly the same bers as in our previous example, we
thing, yet because of our strong can use our generic PUT routine that
typing rules, all three must be we had defined above, and instanti-
written. Also, types SCORES and ate It for our types INTeGEgR
LENGTH would have to be visible in LENGTH, and SCORES:
package 0EVTEXTIO, which would,
when you think about it, result in with KI;
forbidding you from declaring new pr cm RINIwJuMS is*
user defined types that need to be
PUT or GET. Wouldn't It be nice if type MI iS MW Os 0.. 100;
we -could just take one of these PUT type tam is fru 0 .. 36;
routines and make It general enough
so that we don't have to rewrite it S : - 22;
two more timeel O 1 :M :- flu;

329 1 LAMD -- 25;
GENERIC DICLARATIONS

Well, that's exactly what ge-
neric program units do. When we pmmedum RM NUM is
compile a generic declaration, we new iKM I E ;
don't define what type that routine pao""w MUrJOS is
will work with--we Just define a now l so=S);
template. We define the algorithm, Iprdure KI D i S
but leave a 'dumy' name tn place of mnw R fl(OI
the type nme we want the routine to
work with% b --in I=UPgMS

type tMM is MEt *1 W (uMS);
paocebd Rft(tU t in MMd; di PVLMMO.m

9-,2

nO

Logically, the generic instan- such that you must be very specific
tiction Is similar to declaring a in passing parameters of the 4orrect
brand mew subprogram. The differ- type when calling &,subprogam, Tbs
ence is that we don't have to re- rules don't allow you to pasa a rou-
write any of the algorithm for the tine a SCOld. when It is looking for
routine. With one line, the instan- an MITIGEM Genetic program units
tYation, we can esecae from vrtilng. simply take that subprogram or pack-
many Ilien of the subprogram body. age and ýmake it more goeni-al so that

we don't have to rewrite that pLece
-l of code many times.

Ad's estrong typing rules are

mi .

Given the following generic function, fill in the mai" procedure which will
Instantiate It, as well as I/0 for the array component type. It Wi11 then make
a call to tha function and print ouc the results.

-Z2zz22z2z~2% Z :ZZ2n:1ZhZZZZ:Z:::ZZXYZZXzzzzzxzzzzxxzzxzzyzzz12::%Z:ZZ

-Z Abstract: 2

--Z Author: 2--z Date: 2

-Z2
-ZZZZ1mU122ZU22ZZZ22it:z222Zzz22zzzz~zzzzzzz%%zzzzzzxzZZZZIZZZZZzzz:zx

ge•eric

type INDEX TYPE Is (0);
type INT TYPe is wa&ge 0
type £1 TYPE to array (INDUXTYPE) of INT TYPE;

gumetlo GREATEST VALUZ , LIST : AR TYPE) return INT TYPE;

eumetieu GRJEATEST VALUE (LIST : AR TYPE) return INT TYPE It

TENP INT : INT MYE to INT TTE'FIUST;

bagia

fo I a Lu AN) lltea
If LISMC) > TM IN? them.. W..Ir urn LITT(I~z
end Uf;

retm TDMP IN_ ;

sed GREATEST VALU;
'-3

-usssstsxxzssxxxsunuzsxxxs zzsxnzzszuzu zxxxxzxxxzssixzxussuunsu
-- a

-g. &belt~st

--IgIII Zili~III222ZIlU~iZilUiliflflhil21Zi~lUUUU flU|i~iZ

u91ch T.XT.O ,00IIATIIT.VAYUI

immml P+NI

S- Deret se eded types here ,

-- Wake needed Lnstantiations here

-- Declare neoded objects here

bele._'

-- Fill array and then cell function

Print out the results of the funetion *411

od MAINI

OMuuIC MIIOOO 1 -- Ommr le dy
fviction 011" (INS

So far we've seen how to In- Ui1 K,
stantiate a generic program unit. 010r1 M i's La
For the remainder of the chapter, boian
we'll look at writing the bodies of Wtunt (FVl * lWO) / 2,01
a generic. slt AbIS!i1I

Let's consider a generic fune- When instantiated, we eon lolically
tion that amputee the average of think of all instnrese of our sonor-
two floating point ambers#. It may La pe•rmeor N1UI in tlhe body are
Leek iik this1 replaced by afe Fyp Asate that we

osteautiased it itl. lP*meaboro eout
-- nle .Ipmflm :f generic roeml parametor MIu Is

g1aic Jest a place holder for the "am oe
tyl IKIO is dalits Ot the type en pate vwhn we inatant liat

fumelatn #M (PIEF, the generte.

reur Nllý

Gmeric Formal Parameters 2) The operations that can be per-
formed on that type within the body

In ozder co calculate the aver- of the generic program unit.
age of two floating point numbers,
we had to usc operations such as There's-kind of a trade-off he-
addition and division. While these teesn the types we allow to match
are uatural operations for floating durlrg iostwntiation and the opera-
point types, it makes no sense at tions that ore allowed in the body
all to add and divide dome other of the generic. The more types we
types, such as type CUART. alloy to instantisaft the generic
There should be some ay we can pre- with (i.e. the more ganoral it Is)
vent this generic function fram be- the more restricted we are inside
Ing Instantiated for COARACTIUs to the generic as to what we can do to
enforce our limited set of opera- objects of that type. The only pre-
tIons allowed by the type definition defined operations available inside
of enumeration types like CIARACTfl. the generic on an object of a goner-
Ads handles this by defining differ- ic formal type parameter are those
ant classes of generic formal type that are pradefined for ALL types
parameters. that can possibly be watched in an

instantiation of the generic. For
Ads allows us to set up geteric example, If we set up a generic for-

formal parameters that will match mal parameter to match all discrete
the following classes of types: types (integer and enumeration

types), we are prevented from using
o All types any addition or multiplication op-
o All but limited private types erations, since those are not opera-
o All discrete types tions defined for ALL discrete
o All Integer types types, specifically enumeration
a All floating point types types.1. o All fixed point types
o Array types SUHCARY
o Access types

Generic program units are in-
valuable in building up libraries of

The language also defines generic reusable code. Fortunately, uti-
formal parameters to pass values, Lizing existing generic program
objects, and even subprograms to a units in your program through an
generic. These concepts will be Lnstantiation is not very diffA-
covered in the lecture. cult-just pick the right generic

and pass it the right parameters to
Generic Formal TyPe Parameters tnstantgate it. Writing a generic

is more involved in chat you have to
A generic formal type parameter decide what operations are needed In

actually defines two thingis: 1) the algorithm and how general you
The types the aompiler will allow us want the generic to be when setting
to Instantiate the generic with and up the generic formal parameters.

9-5

2131CM 9-2

1. This simple function takes in two object of the pre-defined INTEGER type
and does a floating point division on them, which returns a value of the pro-
defined type FLOAT. Your job is to modify this function so it will take in twvo
objects of any Integer type and return a value of any floating poiht type you
choose. (i.e. make it a generic with two generic formal parameters)

2. After the generic is written vrite a main procedure which tests it using
user defined Integer and floating point types.

-ZZZZZZZZzIZZZZII22zzzzIzIzzzzXXZZZzzznzIIZZZXzIzzzzzzz2I ZZZZ2zz
-Z 2
-Z Abstract: z

-Z AuthorF 2
-Z oate: %

-ZZZZZZZZZZZZZ2222ZZZzz2 2ZZzzz2zzzz2222ZZZZZ2222221222222222z222z2z2222

function INT DIVISION (INTI,INT2 : INTFGER) return FLOAT Is

begin

retuLs FLAT(INT) I VLOAT(INT2);

md;

9-6 @0

-zxxzzxzzzzzzxzxzzzzz~zzzzxzzza:zzznxz~zzzxzzzxz~z:::xzxxz::gzzzxz:2zzz~z
-2 z
-2 Abstract: This generic package Implements an associative cable vith X
-2 an abstract state umchne. The package has the folloving 2

-2subprogriams 2
'-2 INSERT - Places a key and its assocLated value into 2
-2 the table 2

RETRIEVE - Retrieves the value associated vith the %
-- given key z

-Z Generic Pasmetaers:
-Z SIZE - The sin of the table 2
-K IT - The type for the key 2
--2 VALUE - The type for tbe associated values 2

-- Author: Jimmy Key 2

-Z Date: 7 Mar 87 2

-Z Propagated Exceptions: 2
-2 TABLEISFULL - bised when the INSERT operation tries 2
-- to place an association in a full table. Z
-2 ITEM NOT FOUND - Raleed vhen the key is not in the table 2
-z during the RETRIEVE operation. I

-.- ,ZzzzzzzzzYzzzzzzztzZZZZZZZZF, F, ,ZFZ• ZZUXUZ•zzzzzzzz~zz~zzzzzzzzzzzZ

eoneric
SIZE : POSITIVE :a 100;
type KEY is private;
type VALUE is private;

package TA$LEMNAKL Is

procedure INSERT (KEY ITEM : KEY;
A VALUE : VALUE);

function RETRIEVE (KEY ITEM : KEY) return VALUE;

TABLEXS FULL : exception;
ITEMJC NT OUND : exception;

"end TA5LKJAZER;

(Continued on next page)

9-7

package body TASIMirAKt Is

type PAIR is record

A KY : KEY;
ZYSVALU& I VALUEI

and record;

type COUNT to range O..SIZ2;

subtype INDEX to COUNT range Io.5IU;

type TA3LE AUMY is array (INDIX) of FAIR;

ATAB L : TABLE ARRAY;
CURENT.INDX : COUNT :" COUIiFIRST;

-z'z.:zxz::zxzzxzzzzzzzzxxxxzzz::zZztzzxzzzzzzzzzzzlzzzzzzzrzxZZZIZzZZz
-z 2
-- Abstract: This procedure places a key and its associated value into 2
"-2 the table. 2

-2 2
-Z Author: Jiuy Key 2

-Z Date: 7 Mar 87
-Z 2
-2 Propagated Zsceptioss: 2
-2 TABLEISFULL - Raised when the INSERT operation tries %
-2 to place an association In a full table., 2

-222222222ZX222222222222222222222222222222222222Z222222222zx~Z22222222

procedure INSERT (KEY ITEM : in KEY;
A VALUE : In VALUE) is

begin - INSERT

if CURRENT INDEX - SIZE then
raise TAILE ISFULL;

end If;

CURRENT INDEX :a CURRENT INDEX + 1;
A TABLJCVUtENT IIDzX) tZ (KEY ITUN,A VALUE);

end INSERT;

-- (Continued 0m Nit page) -

9..

@0

-zxzz~zz:zzzzzznzzzzzzzzzzzzzzz~z:zxzzzzzzizzzzzzzz~z~zzzzzzzzzzzxzz~zxzzzz
-Z z

-zAbstract: Thisa function returns the value associated with the $Ivan I
-jz key. 2

-2 ortin

* ~- funcagtien RExetion&: (YIE E) eunVLEi

begin -- RETRIEVE

-Search table backwards linearly.
for THIlS INDEX in reverse, INDEX'FKRST.oCURRENT INDEX loop

if ATK3-LE(THISINDEX).A KEY - KEY ITEM then-
re~turn A TABI(TNIS INDX). ITS VIALUE;

end If;
end loop;

raise ITEM NOT FOUND;

end RETRIEVE;

end TABLE MAKER;

-- (Continued on next page.) -

9-9

-2 Absetract this program manipulates the loeneic TAILLNAKKR declared X
-2 provieualyo It instattlates twe tables. a1meight table &

-2and an smoutst table*.

-2 Authors Jimy 1ey 2
- Date$ 9 Nar 67 2

with TAILS NAXERt,T1XT 10;
procedure TABICEINSTANC&S it

I01 a costant t:10 *40
"3 cStant 3

PAX'RZC constant :1 2 1

subtype NAME is String(1..IWLLSTRING);

type HEMIGHIT Is range KINUOIIT*,NAXJIMICGHT; Inches

t pe DOLLAR is digits 6 range 0O...ALANGUNTj

NOV TALL a MIGHT;
ANOINT : DOL&AR;

package UtHEOT TABLE ts new 7AA5LMJAUKETM 0) NANE.
VALUE 0> RIHFJT);

package AMONT TABLE to now TABLEJIAKER(KTY 0 NAM ,
VALUE :> DOLLAR,
SlIZ - > ZOO);

begin - TABLE INSTANCES

N1uGH? TA&L~e.NS8RT("Clyde
ANOUNTIIA1Lg*INSERT("Bonnie, OOO)

NOW TALL :a HZICRT TA2LE.RZTRI2VE("Clyde)

AMODIN in AMOUNrT5ASLLRETRIEVS("&onnis

exception

when URIGN? TABLE.TAIL9 15 VU6LL-0
MT13K0.Wetvsighet CUIT to fu111')i

vhon AiGUNT TAILE.TABLB IS FUILL 0)
TEXT Z0.rut(%Amount temblo to fulll');

*when ICIGNT TABLE *ITEM NOT FOUND a)
TEXT 10.Pe("NIGIIT Wt Ymand Ln Meight tablet");

when MWOUNT TA5L9,TTEM NOT FOUND'0
TEXT IO.Qu("Ameiant lot 'Found in Amount tablet");

and TABILKJNSTANCES;

9-30

Cbepter 10

OLIMO units. One diffeience between tasks
and other program units 16that aGiven a ptrogrm specification, task cannet be a library untt; It is

an Incomplete program, student In- ALVAYS Lin the declarative part of
sttruc-tiones! materials. and et~edent another progras unit,

notes, add tasks to correctly Imple-
meat the program. Program met oen- A simple task that g8es off on
fetm to course software efmLamerig Its owe and doesn't talk with other
attcdards. Instructor may provlde program units can have a simple
up to 5 sasliss. speclfication:

• OCTKW task CR•MCKUSORS;

We can defio an Ad& taok as a If, on the other hand, we needed to
progras unit that logieallv executes eomunicate with a task, ve can do
in parallel with other program so through emtries defined in the
units. A key word in tbaý deftn.- task specification:
tien Is "logically"; a program with
Ad& tasks can nor only run an multi- tas AMTM to
pie proceseor machines, but it can wery ElAMDDO (MEW . ama uiNML);
run on a machine with a single pro- end 4I '.
cessor as well. In this case, the
execution of a task In somehow in- In this case, we initiate communics-
terleaved with the execution of the tion with this task by issuing anmaim progras and other tasks; many emtry call. This entry call can be(.of the decisions as to how this is Liven frou any sequence of state-
done Is left up to the compiler is- mants of any other program unit
plementation. Programing with where entry IWADING is visible. The
tasks can therefore be pretty entry call would look like this (as-
tricky, especially if the tasks must auling that ALTITUDE Is a variable
coemunicate with each other a great of the subtype POSITIVE):
deal.

ALMTIET.R. READING(ALTITUDE);
In this chapter we'll give you

Just a brief taste of what tasks When this line is reached in a as-
look like and how they work. quence of statements, the program

unit will wait until the ALTIMETER
JIVOS. TION task is ready to accept communica-

tion through the READING entry.
SMcIvcffIOU

A task is like any other program
unit in that it has the eami two The body of a task contains the
"parts, a specification and a body, sequence of statements to be per-
that other program units have. As formed by the task. The syntax is
you might expect, the specification very similar to the syntax of other
defines the communication interface program unit bodies:
between the task and other program

10-1

task b A D is work. For example, in the AflITZI
task* we probably wouldn't want to

UOALALTMEIE : i UVAL :- 0; just wait around at the accept
statement for another program unit

bosin to inquire about the altitude. This
lmp would be like a newsstand owner not

-. Parfoims tstemnt t chick selling today's papers until yester-
- air prenm ut a'q day's were all sold out. Ideally,

- IOM ALTI7JO1 if nobody is waiting to Set the al-
FI ADDC titude, the task should go back and

(H9=I : out MURAL) do compute an updated value.

and WiDO; Ads allows this capability
and loop; through various forms of the select

and ATD statement. The select statement
allows a task to select between ac-

When ALTIMETER reaches the accept cepting an entry or performing some
statement, it waits until some other other action. Your instructor will
program unit calls the READING entry be covering the details during the
before it moves on. Once someone lecture.
calls the entry, the statements in-
side the accept statement are exe-, SUIUAT
cuted and we s&y the two easaS are
in remdeivous. -This term just names Ads tasks allow multiple threads
the lifetime of task ccmunicstion. of control to be set up in a pro-

gram. This can make the software
TAKING ITATI•MS more efficient if working with mul-

tiple processors. Even wlth single
We said in the previous example processor machines, tasks are a good

that with the accept statement for tool to break up the solution to be
the READING entry, task ALTIMETER more understandable. Real world
would wait until an antry call is processes that operate in parallel
made to the entry. This Is not a can be coded with taskis to reflect
good situation to be in If the task that parallel nature in the software
should be off doing some critical solution.

9XI=III 10-1

1. In the following program write the task specification for QUEUE TASK (the
task body Is provided). Make sure you include the required entries to PUT
a value into :he queue and TAKE a value off of the queue.

2. Modify the select statement of the task body to do the following:

a) The task will attempt to rendezvous with a caller, but only if it
can do so immediately, If no iaeditete rendezvous is possible,
It will execute an else part, which prints out sa appropriate
message to the terminal.

b) The task will wait for a caller, but it will wait no longer than
60 seconds. If 60 seconds elapse and rendezvous does not occur,
print out an appropriate message to the terminal.

10-2

3. The main subprogram should make call$ to the task entriese Hake the entry
calls to do each the following:

a) The task makes the call, but withdraw* it if rendezvous does not
ocur within the 60 second& (timed entry call).

b) The task Will attempt an entry call, but withdraw* ic if the
rendezvous is not inmedLately possible (conditional entry call).
If so rendexvoue can occur, It executes the else part of the
statement, which prints out an appropriate message.

-- zzz2z2zzzzzzz2uz=ZZZZu XZXZZ:2 UZZZZ1ZZzzzz222zzzzz2z2zzz2222%2
• -Z X

-2 Abstract: This program places values into a queue and retrieves I
-Z theu later* 2
-z %
--2 Author: Andrew Asynchronous 2

-2 Date: 20 Oct 86 2
-Z 2
-ZUZZfl2UZ%2%22%%%ZZZZZZZZ2ZZZ22ZZZZ ZZZz ZZZZZZX•ZZZ2ZZ

procedure START QUE TASK is

MIN NUMBER : constant :a 0;
MA4•X U•-R : constant :- O0O0;

type NUMIBRS is range H!N WIUM4ER..KAX NUMBER;

A NUMBER ; NUMBERS :a MIN NUMBER;

-- Write QUEUE TASK specification here.

(Continued on next page)

1 0-3

-- Z1222Z2Zz ZZfl~nZZZZf:Zn ZZ IZZn ZUZ U ZZflZUZflf2UZI•Z.

-2 Abstract: This tapk is the implemsntation of tbe queue. It has
--2 the following entri *I
--2 UT - Pace a value Into the front of the queues 2
-- TAKE - Retrieve a value from the rear of the queue. X

-Z Authors Andrew Asynchronous
SDate 20 Oct 6 %,

task body QUIIITASK is

SHn I constant to 10;

subtype TEE COUNT Is NUNBRS tange OSIfZZl;
subtype INUI to IU S3M reang 1 ,,e12t
type SPACi Is array (zNDEX) of IU•e l,,

type QUV TrV?& Is record
DUFflR S SPACE•;
HEAD a INDEX :a 1; - Next value to be removed.
TAIL INDEX so 1; - Next available sLot.
COUNT a~I'm XOUT to 0;9

end record;

QUEUE a QUEUE TYPE;

begin - QUEUE TASK

loop

select
when QUEUW.COUNT /- SIZE -0

accept Put(THE NUMBER a In NUIBERS) doQUEUK.BUFYER'rQEUE.TAIL) t- TE•!NUNERI;
end Put;

QUEUE*TAIL so QUEUE.TAIL + 1;
QUEUE.COUNT :a QUEUE.COUNT 4 1;

or
when QUEUE.COUNT /a 0 -)

accept Take(THE NUMNER : out NUMNKRS) do
THE NUMBER :-"QUEUK. SUFFEK(QUKUIE. HIID));

end Take;

QUEUE.HEAD :a QUEUL.HEAD + 1;
QUEUi.COUNT :w QUEUE.COUNT - 1;

or
terminate;

end select;

end loop;

end QUiUeTASK ;

-ZZ2ZZZ1ZZZX22222ZZXZZZXZ START QUEUE TASK 222222ZZZZZZZZZ2222212Z222

begin -STARlT QUEUI TASK

- Hake calls to task.

end START QUUE TASK; 10-4

ZKdgSZ 10-1

-2 Abstracts This program counts the number of each character from I
-- string@ that have been entered from the keyboard. The I
-2 total count Is the total of each character since the I
-2 start of the program.
-Z
-2 Author: Count Chara z
-2 Datel 20 Oct 85
-Z 2

, -~-Z2_Z222fl2222 _•__eFZZZ22 222Z Z 2n T2 2 ZZ 2 Z22 Z ZZZZZZ22 Z 2 ZZ 22H H

uWit TIX 101

MAX NUN : Comatant 30 100;
CHARACTERS INLINE : ýstsst :a 20;

inbtyps CUARtSTO COUNT Is CKAtACTER rame 'a' •. 'a'

type COUNT NU Is ro ie 0.. -AX NU;

type CUA COUNT Is array (CHARTo COUNT) of COUNT NUM;

41 wobtypl LINE Is STRING(I..CRARACTERSINLINZE);

NY LINE : LINE;
CHAR t CHARACTER :3 'Y';

LAST : NATURAL a- 0;.

task COUNT CHARS Is
entry SEND LINE (ALINE s In LINE);
entry PRPINT COUNT;

ewd COUNT.CHARS;

4. package COURT 0 Is mow TEXT, O. INT.GER.ZO(COUNT .U);

(Continued on next page)

10-.

-z::xzzxzlsz: xxxzz::zZ xzxzzsxzzzzzzzuszxzxzzzi:uxnnznzuzs xznsz:
-Z Abstracts This task counts the number of each character tn the 2
-2 string passed In and maintains the running total until 2
-Z told to print It out. The entries to the task are: I
-Z SEND LIKE Call to give task the string to count
-- PRINTCOUNT - Call to print out number of each 2
-- Z character counted 2

-- Author: Count Chars
-- Date: 20 Oct 85 1-- Z I
--ZZ:XZZZZXZZZ:ZZZZXZZXXXZZZXXZZZZZZZZZZZZZZZZXZZXXXXXXXZZZZZZZ:ZZZZZZZXZIZ

tank body COUNTCHARS is

LOCAL.LINE s LINE;
COUNMTE : CHIIACOUNT :a (others - 0);

begin - COUNTCHARS

loop
select

accept SEND LINE (A LINE : in LINE) do
OCAL.LITE :- ALTNE;

for I is LOCAL LINEIRANGE loop
If LOCAL LIM) in CHARS TO COUNT them

COUWl9T(I) :- COUNTER(IT 4÷ I;
sai Ifi;

nd loop;

or

accept PRINT COUNT;

TEXT IOPUT LINE(" THE COUNT OF THE CIARACTERS IS 0> ");
for I in COUNTER'RANGE loop

TEXT IO.PUT(" NUMBER OF ");
rixfio. PUT(I);
TEXT IO.PUT("'S -> 0);

COUI• O,.PUT(COUNTER(I));
TEXT 10. NZW LINE;

of

tersimate;

asi slect;
emd lowp;

end COUNTCHARS;

(Continued on next page)

10-6

@0

bugl. TASKVým

urro.Udlim(K UM.LAST)I
*06nf amr.D Liam Lm);-
no jp.m(, Or'? Vila 2o amTIi (1 o)

as"ub (CU UIa In or' CUR - *a*)

116las;

mW T~AKNft1MCVUrr

?As~g10A;

* islaKM - 0S Ma O

SUwith this complexity are evolving
also. In older languages, the

1. Given a problem speoLfica- primary onstruot for structuring
tion, student instructional materi- program -is the subprogram. This
els, and student notes, student leads the software designers to
toams will develop a complete infor- *truotuirs the softwarr based on the
ml strateg for the problem. U- funotioms to be performed i n the
struactr say ptroide up to 3 as- system. Ma has other tools besides
slots. - blpopums to aid In dealing with

the eomplezity of software. Psokas-
2. Given a problem spoeLfica- e* and tasks can be used to give a

tion, Informal stratet , student more organised and understandable
instructional materials, and student layout to the eode. Using. these
motes, student team will correctly tools, we are so longer constrained
formalize the informal strategy. Into structuring our software based
Instructor may provide up to 4 as- on function; we now can break it up
latse. using objeot or overall processes

in the system as the structuring
3. Given a problem specifics- criteria.

tJ on, an object oriented design,
student Instructiona materials, and
student notes, studrat team wil) OUI*TJOU
correctly tranaform an object oer-
ested design Into da Progra Dsign. Object Oriented Design (OOD) is
Language. The design languae mast one issiSn tool that has becom pop-
conform to Cours software engeLer- ular with Ma. As its nam Implies,
Ing standards. Instructor may pro- COD br•eks the software up into the
vide %p to 4 assists. abstract objects that exist in the

system. It utilizes the paokage
UTEOW -mIn structure as the main building block

of the design. The cornerstone of
As the seying goess there is COD is that apackage grospe togeth-

more than one way to sin coat. er the definitin of tte elass of
There is also more than ane way to objects with the operations that con

* design software. These mathods my be performed on objects of this
vary anywhere from very structured clas.
full life-cycle methodologies with
automated tools, to what Oau best be 000 "
6sesclbed - Oad hoe" oodin er
Moe~g" The steps ia Objoot Oriented

Deign a•ry somewhat, depediLng on
As oe vise -n mace said, no who you talk to and when. Some or-

oe tool is always best; we should ganisstioma use a wry general ap-
use the best tool for the job at preach with only a few steps while
hand. Software continues to grow others use an approach that tries to
more and more complex as we tack)e provide more guidance by breaking
larger projects. Tools that deal down the major steps into more de-e• tail There are arguments on both

11-1

sides of the issue; ask your in- you a starting point. Your instruc-
struotor if you want a more detailed tor vwil show you one way of identi-
discussion. The general steps to tying the objects and operations. OOD, adapted from Grady Booeh in the that makes use of a written pars-
second edition of his book Software gpaph that defines what the system
Engineering with dLa, are: will dc.

1. Identity the objects that
exist in the system and their
oharacteristios. Ads, with features such a pack-

ages, generic and tasks, has added
2. Identify the operations that stuturng capabilities over tradL-

area perfrtesd an those ob- tional languages. wso added capa-
jects. ilities require the use of differ-

ent design methods if they ars to be
* 3. Etablish the visibility of maed to their full advantage. Ob-

each object in relation to 3ect Oriented Design attempts to
the others. tae more of the features of Ada and

result In a design that produces
4. btablish the interface of mson 4destaadable and, maintain-

each object. able cads.

5. Implement each object. U 11-1

OOD is an Iterative process. First Develop an Object Oriented De-
perform the above steps at the high- sign for a syste- that will c snt
eat level of abstraction, enoompesa the ohange In your pocket. Your

O Jg the entire system. In rder to solution abmild aue the fo03luri1ng
° perform the final step of Implement- steps a its algo"ritmh:

Ing the objects, It's likely that
you'll have to repeat the steps on 1. Zero out the counter for the
the nezt lower level of abstraction. total value of the change.
ThMis will identity secondary objects
that am needed In the system, but 2. (Vbile the pocket is not
that dLdn't show up in your ocnsid- empty) Take a coin out of the
eration of the overall process. Poket.
%peat the steps for each level of
abstraction until each object is 3. DetermiAne the value of the
simple enoug to be easily under- 0ein.
stood and Implemented.

4. Add the aalue of the coin to
There are a few ways to Identify the total value.

the objects ad operations In the
systes, The end Prodact of the 5. Finally, display the total

lysis of th o.preoblem should give valtm after the pocket Is empty.

11-2

3 Sof twre Loginoertng Standards:

1FVS&d TALS OF Ada SYSTEMS

a. Type all Ad& reserved words (WM 2.9) in lower case.

b. User defined nams/Ldentifiers should be typed In .211 upper case; i.e.
ATURIAPT, however, many astooated tools and some authors of Ads textboox s
sugeast capitalizing only the first letter of user defined names/identifiers;
ile. Aircraft. This is acceptable but not as readable.

c. Uea the embedded underscore to separate multiple-word Identifiers;
i.e. NaY tRCRAIUT TYI. Also, use -ebedded underscores to add readability to

* numbres; i.e. 1000L000.00.

d. Properly aligned code is such more readable. Try indenting two or
three spaces for each level. In addition, align begins and ends with their
appropriate parent.

a. Add blank lines to aid readability. Use blank lines to set logically
related code apart. Sp.:tftcally, upacing will depend on what's best te, make
your program easier to roesd. Some hints would be to add spaces to offset
subprograms end their associated bests, declarations, loop structures, if
statements, etc.

f. I4entify the nemw of the subprogram or packlagi' with it's end
statemeut; toe.: end M'Y.P0CAM;. In addition, ie's a good practice to
associate the subprogram name with its begin statement; i.e.*
begin - MY FROGMM. Notice you must type in the ''first since this
only a coment to help the maintenance programer.

<- (imdet levels 2 Or 3 spaces

- Abstract: Comment lines outlining the purpose
- of the program unit.
- Author: Nea of programer
- Date: Imte program ustit was orttt-49.

with TEXT 10; - context clauses
procedure-COOING FOWMAT D.MNSTATION is

"- Declare named numIber
NAX VALUE : cosatant :a. 10000.0; - Align throughout to
LO0P LIIT : conastaut to 5; - improve readabitity.

- Declare your variows tpe
type Filme 1M.to delta a01 rane 0. ..s NAXVALU;
type LooP.TTM is conge I ,. WO' LIMITo

- Group object declarations in one locntton, one to a Line

KiT PEED NUmegtR,
YutI V[•I.T IMImm : FIrF.U rypv. :0 e1.0l;

.C-1 package HY.FI'XC. [0 ti new TEXT t.VIXCI).iec((VIXgI) TYPE.);

C40

begin - CODINC FOAT DIMONSTRATION

MY FIXED "" 10.0; A

II PFIXED NUMBER :- MY FiXED + YOUR FIXED NUPISEK;

for INDEX in LOOP TYPE loop - notice the blank linex added
MYX PIXED := YrFIXED + 0.01; - to Rroup the 'for' statement

end l1op; - and improve readability

if MY FIXED - YOURFIXED NUMSER then
-- A series of;

statements if the;
above was true; - Use blank lines to

else - group any related code.
- A series of;
"- statements if the;
- above was false;

"end if;
w! naXuI (fl.PUT (wY ria));end CMh) LmNG_)am omm_ o.t•iritAT ION;

T. Ye, documntation ts a necessary evil. Mlach of our code today is not
documented wial and ts a nightmare to maintain. Documentation up front adds
to program readability, understandabtlity, maintainability... ... need we say
more.

h. As a minimum, we will expect your code to be consented as outlined
below. Other comments should be added at your (or the instri ctors) discretion
to enhance understandability of your code:

(- *Abstract: Comment limes euttlnias the psrpl•,.
-- of 0he pcogr~a unit.
-- Lathor: Ilme of progrmsmr

D- ate: Date program mitt wes written.

procedure DOCUMENTATION Is

begin - DOCUMENTATION

CONI STATEMENT

loop

if NO DOCUMENTATION then - what viLi happen If students
tIaTrorco VILL NOT ACCSET; - don' t dcimeat their cede
ST00SUT W17LL IS 0IO00CISE; - is enpatimed bore• •w .L It S i(

eadIt;* eud If;

end loop;

and DOCWV1irTATION;

A-2

.--.

mASIC Ad& wTU

a. When practical, organLie the declarative regton of a subprogram or a
package specification as folLows:

NAKED NU?43MRS
TYPES
OBJECT ECLARIAT IOMS
TUXT IO ENSTANTI ATIONS

be Separate logical groupings of types by a blank iine.

c. Declarations of records should foll1ow this format:

type MY PERSONNLIFILE to

"- various record fields
end ecord;,

d. Use rtames that are descriptive in nature to enhance program
teadability. Put some thought into this. A meaningful name will greatly
enhance the maintenance programmer's job.

a. Don't forget to use meaningful object names also. Your code vill be
judged for a great part at how readable it is. Your instructor vwil probably
hhbltight ambiguities wherever possible.

f. Always use 'named numbers' when placing range constraints to your
types. This wiLl add a degree of understandability and modifiability to your
code by eliminating those "KAGIC NUHIRS. we're used to ustng. (Exceptiou
are allowed when range of '0' or 'Vi a&t used)

S. As a general rule, objects should be Initialised when declared since
the language does not implicitly do so.

- Abstract: Comment tines otLitning the purpose
-- of the program unit.
- Author: Name of programmer

- Date: Date program unit was written.

procedure INO TYPINCGSTANDAPOS ts

MAX SIZE : constant :a 100; - Named number

type Nm1..OFJTEZN is range I .,, •A SIZE;

type LuCIA,? to (POIt E, lONUml, ruMRU, NINE);
type CARS Is (VU00, LINCROLN MCURY9 NONE);
type BOATS is (, NOL IPADOLE, NOINE);

type BASE kIRCRAFT ts array (NBR OF ITEMS) of AIRCRAFT;
type LOT 7AlS to array (ýNfR OlITEr) of CARS;
type MARKTN)ATS is Arr y y(aNrK'OITIm5) of BOATS;

-- (Continued on next page)

O A-3

tye iTANSPORTATION FILE is
record

LAND : CARS :0 FORD;
SEA t BOATS :.ROW;
AIR : AIRCRAFT :- FIGOTERt ;

end record;

111AIRCRAFT : BASK AIRCRAFT (other* > NONE) ;
TU CAR z O CAZS I- (others -> NOE) ;
TI DOAT t MACINA BOATS :- (others M> NONE) ;
TRAS HISTORY t T&ANSFRTATIOlILZ ;

begin - 01N0,TYPINLS.TANDARD

see

eOd DMmoTYING STANDARDS;

Cog

C..

-. . .

- Arm

CO l. BTSICTURISn

as Avoid RARD CODING' the loop parnimiter specifteation. The use -ofattrLbuten illt greatly *nhosoce maits11t1.1hlitty of your code,

b, It a 'for loop, state"mnt, use Rt *m.ntnitfu(l nm by whtch to tadek the
loop. tingle character eases are permLtted an the index but areAdiscoriaged
sad are not acceptable during this course:

This Is not good.
for l in I *a 3 toop

• . el]Lop; .

This is OK:
" for I Is FICGHTR .s TANKER loop

end loop;

But this Is bettert
for AIRCRAFT Lu AIRCRAFTT! terange loop

end loop;

to Structuring case statements is important for enhancing readability of
your codes

* case THNU&I3 0 •*AUT La

when FIO•lUK ->

DqinAIQUICK;

when SO4KILK m),

OF TATKPIINT2

when NON& 0>

- ass;

O A-$

7

a. Now, organize the declarative region of program unite contatntng
embedded subprograms as follow.:

NAMED .NtmUERS
TYPES
OBJECT DECLARATIONS
SUBPROGRAM SPECIPICATIONS (when needed)
ThXTJ1 INSTANTIATIONS
SUBPROGRAN BODIES

b. Rowever, as a general rule, don't embed subprogram. Embedded
subprograms should be used wen their utility Is only applicable to the local
code. Once embedded, the subprogram ti not reuseable. If you do embed

* subprogroam, group the subprogram specifications together, then place the
"subprogram bodies after any 1/O Instanctiations. Thts viii add to program
readability and understandability.

c. When subprograms are not embedded, compile subprogram specification
and body to separate files.

d. When prudent to do soc, use NAMED NOTATION for parameters when calling
subprograms to aid understandability and future modifiability:

- Abstract: Commoent lines ,tuctlaing the purpose
- of the program afnlt.
- Author: Name of programmer
-- Date: Wte program unit was written.

procedure STACI;KUTILITIZS to

INDEX SIZE : constant :- 20;
KAX NU. OF ITEMS : constant :- 50;

type ITEMS is range 0 .. KAXJWUMOF ITEMS;
type STACKS Is array(INDEX) of ITEM;

THE STACK : STACKS :- (others 0> 0);
THiEIT•M : ITEMS :- 0;

procedure PUSH (STACK : in out STACKS;
ITEN : in ITIMS);

* procedure POP (STACK a ii out STACKS;
ITEM I out ITES)1

package ITEMS 10 is new INTEGER 10 (tTVIS);

- (Continued on next pge)

A-ft

(S

-0- Abeteractt ONmmnt 11408 oautlLuinig the
--- lllpurpose of the program unit.

procedure PUSg *TACK t In out STACKS
KMN a tit tTami IsI

- Local declaratious for PUSH
begIu8n- PUSH

40"649 Code for procedure PUSH
end 1USH;

"- Abtracti Comment lines outliniLg the
- purpose of the progream unit

procedure POP (STACK t Ln out STCKS
* [Yli i nut TIS) to

beg POP Loceal declarations tot POPbegin -• POP
- Code for procedure POP

end FOP;

begin - STACKUT.ITUIS

POP (STACK-) THl STACK -- procedure call using nmaed
ZTEM 0) THUCITIK -- notation for paremeters.

saed STACKITLZUTIUS;

A-i

06

PACKAGU

a. Compile the package specification and the package body ia separate (y.
tiles..

b. Do not 'use' any package 'vithed In' to your program. This vill help
in tracing program resources. The 'use' clause with TEXTtO is acceptable.

c. As a general rule, don't declare objects in package 4pactfLcattons.
These become global and can cause problems when morv then one program unit
accesses the package. Named numbers rt constant objects are permitted since
their value can't changt.

d. Only 'with' packages and subprograms where their utility it needed;
t.oo you probably don't need TEXT 0 for the package specification but may
need it for the package body (so only 'with' It Into the body). This is In
keeping with the principle of LOCALIZATION.

e, Orgtanie the package spe'ctfication as follows:

...eee...................

Abstract: Comment lLves outlining the purpose of
-- each of the program units in the package.
- Author: Nam of programmer

D- ate: Date program unit was written.

with context clauses
package PACKAGE CONTENTS to

NAMED NWI5EILT
TYPES(9,_ SUBPROGIAH SPECUI.CATIONSend PACKAGE.CONTElNT,;
o. Organize the package body as follows:

with TEXT to, - And other context clauses needud
package btdy PACKAGE CONTENTS Is

- local declarations needed hy body subprngraino
- Incl•|aLa any T19XToss tInstrnttation,.

- Abstract: comment lines outlining the
-- purpose of the program unit.
- Author: Name of programer (if different from author
- of the package)
- Date: Date program unit was written.

LOCAL SUBPROGRAMS (NOT ODCLAUD IN PACKAGE SPFC[FICATION)

A- bstract Comment ltmes outtiLtng 06e
"- purpose of the program emet.

C •an..• - e..a. -• * *j ***** e o• qbd

SUIPROGRA 000DIES TO CORRtSPOND WITH THE PACKAGE SP9CItFCATruN

end PACKAGE CoNTENTS;

As8

a. Exception handlers are designed to handle erroneous conditionse 0
NOT use exception handlers with user-defined exceptions, or predefinedW
exceptions to take the place of checks (for situations that will occur
sormally) that should be handled by the program's executable code.

b. Use a block statement to locallxe an exception when appropriate.
Remeber though, overuse of block statements *an cause confusion in code
readability. If you tied this situation, It my be better to create a
subprogram for that section of code.

ce If a subprogram Is tn a peckage, and if that subprogram propagates a
user-d,1fined exceptson, the name of that exception will be declared in the
packade specification; and the subprogram documentation will, outline the
"conditions which would result in propagation of the exception. This allows
the user of the package to correctly write the main program to provide for the
erroneous situation if It occurs. Itf a subprogram raises a predefined error,
that should also be addressed in the subprogram document.itton that appears in
the package specification.

4. Always align the reserved word exception with its 'begin' and 'end'.

e. Don't rely on, or overuse ;others' as a means of handling exceptions.

-Abstract: Coiment lines outlining the purpose of
each subprogram In the package. -

Author: Nlme of programmer
- Date: Date program unit was written.

PropegAted Exceptions: must specify any exceptions (ite.;
-- STACK OVERFLOW) that will be proptgated by

package STACK PACKAGE Is

type ITIINS is range 0 .. AX _NUN OF ITETS;
type STACKS It array(IND1X) oT ETiAM;

procedure PUSH (STACK : in out STACKS;
MTRI a in ITEMS);

procedure POP C STACK : in out STACKS;
MM~ i out tT13W) s

STACKJ WLV
STACK OVSRFLOW I exception| ;.

end STACKrACKAM;

C., A-9

package body STACKPACKAG& is

- Abstr4ct: Comment lLnes outLining the purpose of
i the program u111t.

- PropadAted txcepti•ns: must specify any exceptions (i.e.;
-- STACK OVERFLOW) that vwil be propagated by
-0 this subprogram.

procedure PUSH (STACK : in out STACKS;
MMt : in ITS) it

begin - PUSh

if 801 CONDITION then - some sequence of statements
"rates STACK.OVERFLOV; - that may raise STACKOVZRFLOW

end if;

exception

when STACK OVERFLOW)
raise STACK0OVERFLOW;

end PUSH;

- Abstract: Comment lines outlining the purpote of
- the program unit*
- Propagated Exceptions: must specif) any exceptions (i.e.;

- STACK UNDIRFU)W) that vill be propagated by

- this subprogram.
procedure POP (STACK s in out STACKS;

TEM : out ITEMS) is

begin - POP

if SOME CONDITION then - some stquenev of etacements
raise HTACK UNUIRFLOW; - that -ay rntse STACK UNDERFLOW

enul if;

except ion

when ST4CK UNOCKPLOWI 0
RAISE rtack usnie rf low;

a end ST4CLPACKAGI•;

(-00

a. The formaet for a generic unitl/specification should be as folLovq:

-. Abstract: Comment lines outlining the purpose of the
-- program unit.
- Author: Name of the pigreamier.
- Date: te program unit was written.
- Propagated Ixeeptions: must specify any exceptions that

will be propagated by this subprogram.

generic
YALMf FARAMZTE t In SM IWPE;
'type TFSNRAL PURPOSE ti ; - So- e generte type declaration
with procedure WILeD RIOUlRC (VALII t3 n GRNWRAL PURPOSE)-;

procedure GIKF.IRIC..STAIEIDS (ISOSO2JECT : in out GdNRAL PURPOSE);

procedure GZENRIC STANDARDS (SOKLOIJJCT : in out GENCRAL PURPOSE) is

- local declarations

begin - GENlERIC STANDARDS

e- squence of statements that
e.; - need the above generic parameters

exception

when (some condition)-,
*se; -- some sequence of statements
...... - to handle the condition

and lrNlRIC STANDARDS;

b. Place generic instanttattons within the declarAtive region at
a locatton L hqt still -tll*%" yots to group ,ohJunt ct•e•.atLons.

c. Tnotanrtiate a genertc untt an fottiis:

- Abstract-: Co lient nes outlining the purpose of
- the program unit,
-- Author: INam of programer
- Date: Date program unit wa wrtten.e
- Propagated Exceptions: must specify any exceptions that
-- will be propagated by this subprogram.

with IT We GISrgICSXAMDAP.DS, APK;

pI.6edure~i•gO SNAIITAATE Oi to

type MATChrIN TYwE ti o., - Whetever.
type AOE AT to

- (Continued on next pgeu) -

-KE__MATCH,
PON SPECIFIC : A.GENERAL TYPE :- ?;

package MATCH 10 is now INTZGOR 1o (MATCHING TYPE);
use MATCHJIO;

procedure GENERIC INSTANCE is new GENERIC STANDARDS
(VALUE PARAMETER 0> THE MATCH;

GENERAL PURPOSE -> A GENERAL TYPE;
RED RESOURCE 0> A PK.LIkEPROCDURE);

begin - DEMOINSTANTIATION

0O*O

GENERIC INSTANCE(NMON SPECIFIC); - Procedure cell to instantiated
.,.; :-- procedure

exception

when (some condition) ->
so*; -- soam sequence of statements
... ; -- to handle the condition

end DEMO INSTANTIATION;

A-12

• .

STASU

a. It ts beet to use entries to coamuntcate with tasks to avoid . 7Th
use of global objectN.

b. Locate task specifications after localised subprograms (it any).

c. Group task spectfications together when declaring more than one task.

- AbstraCtl Commen1t imes Outliftifg the POrpoIsp Of
-- the program uit,
- Authors Name of programmer

D- ates Date program unit was written.
- Propa8ted RteceptLona: must apecify any exception* that

S -- will be prop4gated by this subprogram.

procedure MAIN is

- amed amber definitions
L- ocal type definitions

- Local object definitions
- Any 1/O instantiotions

task SCRUN CONTROL is
entry SEZE;
entry ULIASS;

V: end SCREtNmCOWTROL; V)
task PRINT Is

entry PRINT!;
end PRINT;

-- - - ---- - --- - - -

- Abstract: Comment lines oustltning the purpose of
- the program unit.
-- Propagated izxceptions: must specify any exceptions that
- will hf. prupagsaed! by this svihsreugru.•.

task body SCRIINCOMTROL is

begin - SCRSSN CONTROL
fe so;" code
select

accept 51351;
- more code if required

accept RELKASEi;

end select;
and SCR9IH CONTROL;

(7cAo

- Abstract: Comment lines outlining the purpose of the
program unit* .

Propagated Exceptions: must specify any exceptions
that vwil be propagated by this subprogram.

task body PRINT is

begin - PRINT
o0e -- SOe code
select:

accept PUUT.;
oo0

"end select;
and PRI NT;

"begin - NAIN

PUINT. PINTI ;

exception

when SOME CONDITION 0>
000

end NATN;

A-14

Ada GLOSSARY

*Abstraction - A principle of Soiftwaem Engineering. Abminiction is the pnicess of extracting essential informaimon rmlating to a
problem while filtering out the unnecessary (lower level) details that tend to cloud our understanding of the problem,

Ameei Type - An access type is used in conjunction with the *allocutur" "tutenvent to dynamically create objects doC
execution. Keyword: arw.

Avo Valmu - An aces value provides the locationi of. or "polnah. to". ani 4bjec which has been craea~d by the evaluation of an
allocator. Keyword: amis.

Asewmrmcy Comoreat - An accuracy consmimnt specirm ies trelative at absolute envor bound or values. of a real type. Keyword.

Ads - The new High Order Luagag develoed under the spovisorship of the United State.. Department of Defense (DOD) to.
obta: i the bensfita of langsage commonality acre.. wide variety of culputer systems. Ada hos been designated by Owe
DOD so th official language for all flawv embedded computer apiplicatiout pogrms%.

Ada Comnpileor Validation Ciapbililty (ACYC) -An Integrated mat of tosms. pruceurun.-. wfofware tools. documentation
developed by Soffech. Inc. for conducting validation testi. of Ada ctmrpilers. The ACVC will be used by the Ada.

* ~Validation Organization (A VO) to perform formal Ada validation tests.

Ado lategralad Eunvirome. (AIR) - The Ada language implementation system. being developed by lnterrnetrics. Inc.. under
contract to the U.S. Air F~orm., to enable the development o1 prograums written in the Ada Language for military computer
sysmen. ,(See APSE)

Ads Lamgmag System (ALS) - The Ada lanpuage impkementatkin system. developed by Sofrech. lac.. under contract to the
U.S. Army, that will enable programs in the Ada language for execution oan advanced. embedded military target computer
systems. The AL.S rpepents the first full Ada Programming Support l~rivironnient 4APSE1 to be ..upplied to the DOD. (See
APSE)

Ada Joint Progame Office (AJPO) - The DOD office responaible kwr the onv.ouragcment and control at the development of the
011 Ada language and its implementation in DOD computer systems.

Ada Progrwavmiog Support Zavls'om t I APSE) - A full Ads programming envirnmie-nt that enables programmers W
progmram in the Ada language. using a sandard sat of developmcnt tools. that ca= be executedi on wkid variety of target
computers. The Ada language system 6s a friendly. efficient. flexible. portable. euasy it) use programming environment.

Ada Software Enginvering Education and Troaining Took Tom. (ASLIEI) - The purpose of the ASELT is to provide a
detailed and organized approach to the tua.k or identifying the Ada education and traininp need.. of the DOD community.
including methodologies and materials to rill those needu.

Ada Va~lidation Orgamluatlo (AVO) - The component of the AMP(reprms'hkc Ior conducting lormail Ada compiler
validation tests and for encouraging the Lornict implemcntation ol the Ada langu~agc.

Aggrogate - An aggregate iba written form denoting a tompusithc value. An array 'aggregate denr*,.. a value ol'an wany type; a
* ~record aggregate denote a value or a record type. The componenit% of an appregiate ma) be speiticd using either positional

or named association.

Allocawo - The allocator statement create% a new objet or a type designated by an uiccess typec. and returns. an access value
designating the location of the created obk.vt.

Awcetoir - An ancestor compilation unit of acompilation unit currenly heingtgcuapuled is a imembher of the following set: 1.

a. A unit mentioned in a wihr clause of tOe comnpilation unit currenly being cqunpikLd..

b. An outer textually-neated unit containing the unit cummily beiing compiled. ii that unit is a subunit.
c. The specification pant ofa subprogram or package body currently heing ctuap iked.
d. One of the units mentioned in a with c.lause ci the anctmor contrilialkir undellned in part% (h i and 1c) ut~ive; and

e. Package STANDARD.
In shun, it is any compilation 6nil which i% made visible to, a comipilatton unit currenti> being conipilod. not including the

01 ~unit currently being compiled itself It.
Attribute - An attribute is a predefined charavtienric.i. pertaning iii the ilefinikion of a type or in t'hjwx

Body - A body is a program unit defining the excutable prtwior or inmplernintatimn or' sa.ubprograim. package. or task.
9.I

Body Stub - A body stub is a replacement for a body that is compiled xeparately in a subunit.

Code Generator - The component of a compiler hack end that generate., the machine language for a specified target computer.
Typically, a separate code generator is required for each type of target computer.

. ollection - A collection is the entire set of allocated objects designated by an access type.

W!upilation Unit - A compilation unit is a program unit which can he compiled independently from any other text. It is
optionally preceded by a context clause naming other compilation units upon which it may depend. A compilation unit may
be the specification or the body of a subprosram or package.

Compiler - A compiler is a computer program that can translate source programs written in a High Order Language (such as
Ads) into machine language programs that can be executed on specified target computers.

Compiler Back End - The portion of the compiler that contains the component% which depend upon the characteristics of the

larget computer, and therefore must be designed specifically forceach target computer. (See Crnde Geerator)

"Compier Frent End - See Machine Indepensent Poeiotn.

Complete progrfm - A pmVSnm with no unresolved external reference is a complete program.

Complletmus - A principle of Software Engineering. Completeness efecrs to the proerties of moduL.-s with a system, i.e., the
module should be small enough to be understood as a whole, and its interfaces should he clearly defined and strictly
enforced. If these conditions are met. it is a trivial mattertoensure that no details are missing from the module in question.

Component - A component is an object that is a pan of a larger composite object or a value that is a pan of a larger composite
value. An indexed component is a name containing expressions denoting indices, and names a componcnt. in an anay or an
entry in a family of entries. A selected component is the identifier of the component prefixed by the name of the entity of
which it is a component (such as a record type).

Compodte type - An object of a composite type is comprised of one or more components. There are two kinds of composite
type: arrays and records. All of the components of an army arc of the same subtype. individual componentb can be selected
by their indices. The components of a record may be of different types.: individual component% can be %elected by their
identifiers.

,Loalrmability - A principle of Software Engineering. Confirmability rufers it) ,he organization of a system. insofar as it is
organized in such a fashion as to promote the cflicicnt and reliable testing ol'thu system.

Constant - See Object.

Constraint - A constraint determines a subset of the legal values of a type. A value within that sub•et is said to satisfy the
constraint.

Context Clause - A context clause identifies-additional library unit% upon which a following compilation unit may depend,

Cross Compiler - A compiler that is ablc to Scncrate nmachine code for a computer system other than the computer system
"hosting the compiler.

Declarative Part - A declarative part is a sequence of declarations and related inforimation such as. subprogram bodies and

representation specifications that apply over a region of a program text.

Delimiter - A wparator, such as a comma. semicolon. colon,. or parenthL-,i% i,. called n delimiter.

Derived Type - A derived type is a type whose operations and set of value% are taken from those of an existing 'parent' type.
Objects or a derived type arc not compatible with objects or the parent type.

Discrete Type - The set of values associated with a discrete type is an ordered set of distinct, exact values. Discrete types and
values may •:e used as army or entry indics, loop control parameters, and as €lchoies in case .tatements and record variants.

All integer and enumeration types are discrete.

* Discrimiuant - A discriminant is a specially designated component of a record which allows the structure of a record to take on
a variety of different forms. The variations oF the record may depend on the value of the dis.riminant.

Discrinminant Constraint - A discriminant constr-int specifics a value for each discriminant component in a discriminated
record type or object.

DOD - The United States Department of len.,tse.

(OEf.iclency - A goal of Software Engineering. Efficiency refer, to tfe pti,,al u.: of available. resources, which, in a
computational environmcnt, appear primarily as time and space rc.•ur'es.

B-2

Elaborailon - 1t;e elaboration ol declaratioin is the proces- by which the ideclaration achieve% its 01I1eel (such as the allocation or
inemory to an object declaration). thius prtcess occurs, during lih- execution phasu.

Emibudded Computer - A computer that is included within. as% an integral part. a larger opertional system or item of
equaipment. An embedded computer ib typically a smtall. dedicated. special purpose machine designed to perform~ sJM,-
functions (often control functions) of a larger system. Example% are sumputers, in industrial robo~tics equipment. nayq
systems, and process control devices.

Entity - Anything ftht may he referred to by name is an Ado entity: ohbgect. types. vialues and all prontrani units, are all entities.

Entry - Entries ame communications path% between tasks, Entiries within a tasAi are called just as subprograms amre aled (from
ouitaide the task containing the euntry) and may have parameters associated with them. At least one matching accept
matement appears in the task body for teach entry declared in the task siqweirication.

-- "mu =m Type - An enumeration type describes. a set of discrete values which are altecifled in the type declamaion. These
values, mus be eithe valid idenftiliers or character literals.

avmlumeden and Valiadato (E & V) Team - Thle E & V wem is responsible for developing the teciniques and toos which will
provide a caipability to perform- asmuaasww of APSEs and determine c'unurnmanve of APSEh to the Common APSE Interf ace.
Set (CAIS).

Exception - An exception name% an event that causes normal priusram executioin tit terntinate. Users can define exceptions
* meaningful to their application, detect the occurrence of the exception cundition. and handle the exception by executing a

section of program text in response. (See £xc-piiau Handier)

Exception Handier - An exception ha~ndler is that part of a program that will he executed when an exception condition occurs.
If no exception handler it. provided and an exception condititn iwcurs. the programn will he abinormally terrminated.

Expruesdon - Any entity that has a value (including a function call) is e nsidere tit he an expressioin. The term it; most often
applied to formutas that have a numeric or logical value.

Generic Unit - A generic unit is a non-executable template for a %uhpnigrani or a package. A generic unit can accept matching
parameters that ame either types. obiject%. anidlur subprtigraiiis. a% specified in the Seneric ltvmal part. An executable
instance of this generic template can be created by the pris'em. of generic instantiation.

High Order Lansguiage (HOL) - A programming languagte that enable% a programmer tot write computer isrcil sl
English-like, readable form, rather than in a complex miachine languagec. Ada. COBOL. and FORTRAN ame examples of
high order languages.

Host Computer - A computer system uptn which a programming envirnmment is installed tit enable the clTicient development
of programs to be executed on specified target computers, Boist computers ame typic~ally large: 1lksible. multiprogramming
computers.

Index Constraint - An indcx constraint specifies the upper and lower bounds ltw each indcx range olan array type.

Indexed Component - An indexed component namecs a Ltimiptinent iiia, array or an entry in a family ol task entries.

Informaition Hidiomg - A principle of Sohiware Engineering. nlnhtematkin hiding refers io the fineess5 of making certain
* implementation details inaccessible while &alk~wing the interlace 141 rumain visible. Its purmsew. allied with the principle of.

abstraction, is to prevent high-level decisions front being basiA on low-level characteristic,..

Instantlation - The process of causing an executable prograni unit to he created lsmi a generic template by supplying a
matching actual parameter for each generic ltw'mal parAnwicwr that appears in the fimutal part ol'tht: generic: unit.

Intege Type - An initeger type is a disce~te type whose values represent all integer number. within a slpavilled range.

KAPSE lnterfbkee T~eeam (KIT) - A teamn of military umd DOD) muttfacitir peronnel, the KIT wath itrpiized by fth AJPO to
identify. examine, and set standardioatkirn policies for Kernal Ada Prtwpaninting Suppotri Eavirnniment (KAPSE) interfaces. -
The KIT is responsible for defining a standard Net of KAPt* inmertacos to ensure the intertiperahility of data and the
transportability of tools between conforming APSL-. ISe KAPStI

Kernel Ads Programming Support Environmetl 1KAPSI.) - A ctwv group oi pn)grams that 1-mides ba sic functions in
support of the balance WINth Ada Progruitiniing Suppimi lEnvrinemiiwnt. and permits the transfer tit the APSE it) different host
computer systems withotut moidification it) the KAPSh package hitilies.

KAPSE Intertace Team from Industry and Acaidemria (KITIA - I'le ciounterpart tot the KIT Irnin industry and acnAMEN

Lexical Unit - A lexical unit ior lexical clenienti is an iticntilier, a' number, a character or %tning literal dl.i
comment. Basically. it is the smallest meaninglul unit in the Adi language,

B-3

Library Unit - A library unit is a separately compilahic member of a program library - either the declaration of a generic unit.
package or subprogram. a itubprogram'body, or an instantiation o a generic unit. Within a given propron, library. the names
or all library units must be distinct identifier%.

Limited Type - A limited type is a type for which no predefined operutions are implicitly declared, A private type may be
limited by the inclusion of the reserved word "limited" in the type declaration. All task types ame limited.(

-Witeral -A literal states a value literally. that is. by means or letters and digits. A literal is either a numeric, enumeration.
string or character literal.

Local~ntion - A principle of Soltwarc Engineering. Localization refers to the grouping of logically related entities in the same
physical module, thereby localizing possible error.

Machine Language - The binary language used to communicate with a cotnputer sysmeni. Each computer ubes its own, unique
machine language.

Main Program - The subprogram (usually a parameteriess procedure) which initially executes in an Ada system.

* Miniml Ada P~rogrmming Support Enmvironment (IbAPSE) - A minimal grtvup or software too~ls sufficient to enable
prograimmers to develop programs in Ada.

MI (Machine Imiepoadeat Portion) - The part or a compiler that ct~itsains components which are independent of the
characteristics of the target computer. and so can be used in common fir many different target comiputer,'. - often colled the

* compiler "front end'.

Model Number - A model number is an exactly representable value ol a floating poiint type. Arithmetic 4tperations on floating
point numbers are defined in terms of operations on the moidel number% of the type. These operations will bet the same on all
implementations of Ad&.

Modifiability - A goal of Software Engineering. Modifiability rck'rs to a proces% ol controlled change. whether in response to
an error or a change in requirements, in which introduced changes% do not increase the complexity of the system.
Pretservation of the original design structure should be an important considerationa in achieving modifiability..

Modularity - A principle of Software Engineering. Modularity coin he defined as, a purposmeful structuring ot resources. The
ideal module is small, has a single purpose. and has a well-define J interlace.

Name - A namc is a symbol that stands for an entity-. the name de-notes the entity.(

Named Association - A named association specif ies the assocwiationt or an itemn with onec or more positions in a list, by naming
the positions.

Object - An object contains a value. A program create% an object by elabotrating: ati object dcvlaratioin or by evaluating an
allocator. In either case, a type is specified lor the object. and the objeCtI Can cointaink valuc% only of that specified type. An
object can be either a variable or a constant.

Object Program - The machine language output 01 a compiler when a.-source progrnull is input.

Operation -An operation is an elemnentary action directly assoiciated with one tor imire types. The operation is either implicitly
declared along with thc type declaratior.. or it is an explicitly declared %ubprogramu that his a parameter or result ol the type.

Operator - An operator is an oiperation that has tine or two operands. A tmnarýs ofvrator is written belore a single operand; a
binary operator is written between two operands. This notatioin, called "infix" noitation, is a special kind of function call.

Overluading - Overloading allows operators, subprogram%. identifiers, and literals to have miore than oine mecaning at different
points within the program text. An overloaded operAtor or subproigrastt is oine which a user has defined it) have a different
meaning depending upon the type ol paramecter it can accept, allowing the definition ol sveral subprograms with the bamne
name. A& overloaded enumeration literal is an identifier that appears in the definitioin of more than one- anuneratioin type.
Ada uses type information to select the ctwmvi' literal or mublirogramn.

Package - A package is a separately cumpilable prograim unit (consisting ot a spevificationi and a body) that may contain related
type%. objects. and subprogrums that operate on objetst of types defined in the same package spci.fiication. The visible panr
of a package (the part of the specification that appears before the reserved word "privatv*) defines names that may be
refe~renced external to the package by mecans tit a coitext clause. the private part contains internal declarations of types.
objects, and programi units that are hidden frotm the use.r. The bodly of a package ctintains the implementations of
subprograms which have been -specified in the visible part of the package.

Parameter - A parameter is associated with a subprogram, task entry. or generic unit and is used to communicate with the
(~~~ corresponding program tinit boy. A luarmal parameter is an identifier used tit denote, the pariameter within the s.ubprogram

-~ boy, tsk bdy, r j~neri uni bod. Anualu, parametecr is the entity amsociated w'th the corresponding forrmal paramete

B-4

at invocation or instantiatiurl time. The mixtne or a paramecter spiccilies whether the us-AciatesJ parameter may be used for
(5D- input. output, or both. lbs associationt of actual parameters with formial parameters can be, specified by named association,

by positional association. or by a combination of these methods.

Program Design Lanuage (PDL) - An E~nglish-like &ntit icial langzuage. sometimes called pseudo-code. used in docun1(the design of program unit bodies. The PL)L used in the design or thc Ada Lanrguage Systemi 4AL.SI utes construct, slr
to thos in the Ada language. thereby facilitaiting the tranition tot final imiplementation,

fositlnal Asiuoclation - A positional astioeiation specifics the aassociation of(an item with a position in a list. by using the same
position an the list.

Pragmna - A pragma is an instruction to the compiler to perform action% outsidc the scope offproognam logic. such a% interfaces
with other languages or compiler optimization.

Private Type - A private type Is a type which may be uased outside the package in which it is declared without knowing its.
intelrnal data strcture. A private type, which may only be declared in a package. is known onily by its discriminants (if any)
and by the set of operatiorn; defined for it (in the same package specification). The only implicitly defined operations
applicable to a private type we the tesis for equality and inequality and the assignment operation. unless the type is limited..
in which case no operations awe implicitly defined.

Pr ocedure - (See Suabprogrem)

Programs - A program is a collection of one or nuirc compilation units which have tall been comipiled rel~ative to each other. One
or these compilation units must be a subproigram des-ignated a% the main pro~r~an. which invskes tither subprograms that ame
declared in other compilation units.

Program unit - A program unit is a genric unit, a package, a subfirugrunm. tw ai task unit.

Programming Envirowalmem - An integrated collection or programs% that provide a wide vunct%- of progrmn development.
configuration management. project control, and maintenance runcttaon%. The Ada Progr~ammring Support Environment
(APSE) as an example of a specialized programming enivinronnint.

Program Librasry - The compilation unit% that make up a programt elongri to a progr~ama library'. A "libr~ary' unit"t~mh(j* programt library may be specified in a context clause at the start of' anitther comtpilation unit. e-\

Qualified Expressaion - A qualified expression further sipecifils the type of an capression by precedling the expression v as -,

indication of its typ or subtype, Qualification is necessary when. in it% absence, the expression is ambiltvoub (perhaps as a
result of overloading).

Range - A runge is a contiguous set of values. it(a Kcalar type. A range is specified by giving the Ili%% or and uapper bounds of the
set of values.

Range Constraint - A range constraint or a type specieis, a r*ange. zand therehý determines- the wet tit values applicable to the
type or subtype.

Real Type - A real type is a type whose.L value%. represent ap MsMaa~tiiin tit the real numbe rs. There asre two kinds: fixed point
types are specified with absolutc preciskin by specifying a naxievumun interval itdeltaa hi.tmvrie values of'the type. jfiriating
point type% are speciraced with reclative prccision citpmessd as, a tnumbier til'significant decioal digit%.

Rehostabllity - The capability of a programmning onvironmvent. such as an APSE~. lto he moved tot a diffierent host computer
without major rmidification. Rebostahility is achieved by the vioncentration tit all hos~t Jkervoucriccs in the KAPSE and in
the runtimc support libraries. (See Raeaatiuthi Sisippo.: LUsnirsi

RaWHtll..- This gnal of Software Engineering reIerw to the ability of a system to opm.rate withotut human intervention for klon
periods of time. Reliability muist he a primne cornsideratiori cary in the de~sign: it may nott he- aiddd at a loatr time.

Renaming Declaration - A renaming declaration declarcs another naift ftir an entity.

Randezvous - A rendezvous is the interaction that ticcurs between two parallel tasks wheiitmon task has called an renetr of' the
other task. and a curresponding uirept statement is being execut.-d by the other sk tian be.halftof the calling task.

Representation Clause - A represenitation clause optionally %pexirte.. the tintlerlying refrrcsentatain and/or addresses for data
and program units,

Retargetablllty -The capability of a programming crnvinwriimen. such as an AML tot be made tot produceI pro' % for
different target environments without major mimdification. Retlargotiahility is enhanced by- designing it% basic un
as machine independent as possiibl.

Runtime Support Library (RSL) - The component of'a compiler back end that provides the additional support functions
required for the execution of programs on a specified target computer. Since each type of target computer requires its own
supporting functions, a unique runtimc support library is required for each type of target computer.

, alar Type - A scalt.r type is a type whose values have no components. Integer, real and enumeration types are scalar.
* Further, the values of a scalar type are ordered.

Scope - The scope of a declaration is that region of text over which the declaration has effect.

Selected Component - A selected component is composed of the name of the component, preceded by the name of the structure
of which it is a component. Selected components ar used • o denote record components. task entries, and objects designated
by access values.

Software EnginteerIng - The methods and techniques u.ed in the development of efficient, reliable, and maintainable computer
software.

Software Portability - The capability of a program to be moved between different computer systems without modification.
Softwtre portability is one of the major goals of the Ads language implementation.

Source Program - A program written in a high order language (such as Ada) for input to a compiler. (See Object Program)

Statement - A statement specifies one or more actions to he pcrformed during the execution of a program.

Static Expression - A static expression is an cxpression whose value does not depend on the execution of the program in which
it is contained.

Steelman - The DOD document that specifies the technical and qualitative requirements for the Ada languagc.
Stoneman - The DOD document that specifies the technical and qualitative requirements for implemcntating an APSE.

Subprogram - A subprogram is an executable program unit that may have parameters for communication between the
subprogram and its invoking pr'gram unit. A subprogram declaration specifics the name of the suhbprgram and lists its
formal parameters. The body of a subprogram specifies its execution. A suhprogrnam can he either a pro•dc.ure, which
performs a sequence of statements and is invoked by a procedure call statenment. or a heitihmi. which returns a value (called
the result), and so a function call is not a. tatement. but an expression. The subprogram call specifli!, the actual parameters
that afe to be associated with the formal parameters.

btype - A subtype of a type (called the parent type) characteriz.es a subhet of the values of the type. The bounds of the subt
am determined by the constraint on the type. The set olfoperations applicable it a subtype arc the same as that applicable to
the parent type. Objerts of a subtype ar compatible with objects oflthe parent type.

Software Life Cycle - The span of time over which a %oftwan: systcn is in existence. starting with its first conception. and
ending with its last use. The software life cycle is usually divided into phases. such a%. Analysti, Requiarments Definition,
Design, Code, Validation, and Operation and Maintenance.

Target Computer - A computer. usually embedded in an operational ,ystenm. that is designated t) receive programs in its
native machine language from one or nmore host computer.. larget computers are typicall. small, special-purpose
machines.

Task - A task is a program unit that operates in parallel with other program units. It consists of a tak specification (which
specifies the name of the task and the names and formal parameter% of' it% entricsl. and a task bxxd. which defines its
execution.

Task Type - A task type declaration is a type declaration similar in lrwni t) a task specification that permits the subsequent
declaration of any number of identical task units. A value of a task type de.signates a task. All task types are limited types.

Type - A type characterizes a met of values and a -4t of p.rmtkin applicable to thos values. A type definitikm is a language
* construct that defires a type. A particular type is either an access type. an array type, a private type. a reco., l type. a sealar

type, or a task type.

Understandability - This goal of Software linginccring must he mIet in order for any of the other goal. to be achieved. The
understandability of a system is a measure of how well it reilects a naltlral view or the world.

Uniformity - A principle or Software Engineering that rcl'r% it) the consisiency ot notation within a given system. In order to
be understandable. modules should be frec from unnecessary differenc.es,

!se Clause - A usc clausc is a context clause that allows direct relerence to declarations that appear in the visible parts of
K W packages named in a with clause.

5-6

Variant Part - A varant pan of a record Specifles, alternative veiM.wd complnents, depending on U discriminant of he record.
Bach value of the diserminant establishex a particular aternative of the variant part.

S Vilbility - At a given point In the progmn text, the cldclndtitm of an entity I% directly visible if it can be reference i
simple name. 7h declation is "visible by election" is it can be referenced in a named aociation or asu a
component. W . "

With Clam - A with clause in a context clauxe that allow% relerencc (by expanded name) to dtlarations. that appear in the
visible pams of named packages. A with clause also allow% dir'et rlierene to other named lihrtry units.. uch as generic
uits and subprograms.

8

Ip

,*1*

UP

(241

B-7

STUDEN~T RMNOUT

230KR4916 003
Z30AR4924 004

230KR4924 003
,4O?•4916 0030 4OST4924 020
1240ST4924 022

Technical Training SOP 686

C OMT= 0tOzfm DESZ

rAXWW 1987

ir

USAF TECHNICAL TRAINING SCHOOL
3390th Technical Training Group

Keesler Air Force Bute, Mississippi

Designed For ATC Course Use - 4/A

W.(FA, W S--m Do *@o, USE On rme ,os

3300 TECRNICAL TRAINING WING
3390 TECKNICAL THAININC GROUP

K&ESLER AIR FORCE BASI, MISSISSIPPI

PEILOSOPIY:

The philosophy of the wing emerges from a deep concern for individ- -"

ual Air Force men and women and the need to provide highly trained .'
and motivated personnel to sustain the mission of the Air Force.
We believe the abilities, vorth, self-respect, and dignity of each
student, must be fully recognized; we believe each must be provided
the opportunity for the pursuit and mastery of an occupational
specialty to the full extent of his or her capabilities and aspira-
tions, and is of immediate and continuing benefit to the individ-
ual, the Air Force, and the country. To these ends, we provide
opportunities for individual development of initial technical
proficiencies, on-the-job training in challenging job assignments,
and follov-on growth as supervisors. In support of this individual
development, and to facilitate maximum Srovth of its students, the
wing encourages and supports the professional development of its
faculty and administrator@, and actively promote$ innovation
through research and the sharing of concepcs and materials with .
other educational institutions.

Supersedes ATC 90P 886, June 1986

LOW

9C

In

).w

I-L

,It

00

o)Z

•- ER

0 •

ec..

U)
0
__ L

C U)

. -(5

-4-J

o
U

iG
IEu-� 0
II C

C.
0

I I I

I

&k9
4

0
I-rn0 'NJ:
C.)

0

(9
-J

0
'pm

0

I- D

5

Lai

mini

L1LJ0c
Pn

LL-

a-

2=

U1

0.

4-~Ij 0

4-0 a) E
c

4-d

(fQ) 4
cn~G Q)4j

0 cnQ
U)2 U)

O a Q) 4 Q)

Q) Q)

C))QQ) L.)
'4.n

zz-j _0

Oo4-d

_
C)

-E Q)

a) E -
~4-j

oEE

I In

10

i•,WIN

La.
mi

• .-,

*. 0 __ ___ __

11

- Q-

o7- Co2 W
co E-4 m
HL

-L

LLJL<

H LLJJLL-

E-4 LLJ~

U))

12

LaJ
"LA Lai

13

00 A

use 0

63 IL

to i

0' k

la

ul 14

0 z

I-4-,--

r.1- U0

00

z_ -o 0o 00 •
. - 0"a-- 0

0 0 w

"H oE0 Eo° e
H - -0

c wE
" 0• I !

15

C:C
0@

4 -14-

.0

_

L0

0n 0 4-

0 -4-,

U Cl

- 0 C L. 0 0~-

0 0 0) CL L

0 c 0 0 0

Z) zCE z

0PrCl

'I -~x
C16

C.n
0

Cr)r
E-0-

--

Q) cU)0
0 Q)

H V)
U) QU) 0 Cn .2N-

0 Q C ~0

74 0,

- 0 a

Z Q) c)

I-C

af) 4 -j-

418

0) o 0 (rI

0~~ 0C~G
04.

cr'0 0
00 4--~ E0-

00

19

02

0-45
D3 E

F. E E U

o- c 4 - 4-. U) (n -

c- 0

0E 0

UOQ))c0L>Q) 'a)
o) c:- E cn

E-44

L- -+-- 0 L-0

00

21

-7

CI) C)
U)c 05

u C

00

0 0 Wn '4
a) L.

0 0 -J

U)> L
(1) i-v' >4-1

0 Q) '-) V CD - U)
L0 0 T 04-

o o
t+- -C Q

22

C.

0*
£ Cr)

. - 0 -

p Q) Cr)
a)

0 -�

J 0
C/)

0

�1J a.) -�

K E
0
0
a)
Cl)
j

rmO Q-j

W Ct) Q4�J

I I

(.9
23

cc

• UII
0

0#

24

C-

0
a .ha. e

cc um 1(cc

hbJJ

a-a

LL&J
LbJ

o cG
aLa

CD,
cc0

0C

- J -J

CL. CD
CL. 0Q

25

S• Ma Od

IW

N .14

ago
14 U NI U

114

hId

t 06 sk I

-4 = a
m4 hi m

a ad to ih

ad 14

•U

? TA

N PU M

92

ii L e i, ..

m ba 4
U31 4i P4

*00 99 4
N3i 4 14W F

103 W IIIbi m-4

A NIP41

4 14 PC 26

t4 3A 4D4ib

* 4)

'Iin

VI

0 FA

5227

IO 0 .i 0% 6, 0 a S j

ItI I we

DWI v . a s I:

ad~
4 m0 , a

QI ba 4Iii Q U hi

dU 3

I a ri

? "I M 2 9

* ,.* ll. 3 • ,..

I...i*e U &Im

34 64 m

IId

28

Level 1: (User Contract)

K. 1. CPCI Organizing Syntax

package - is

-- Intended State Machine:

-- Transition Functions:

too

-0 State Data;

end -

2. Functional Specification

e.g.,

-- <Receive AUTODIN Segments>

3. CPC Designations

procedure - (....)

Sith- ; use -B

4. Commented Abstract Declarations of State Data

e.g.,

-- AAAA ; ABSTRACTFI.LE;

-- XXXX : STACK;

29

Level 2: (betihn Parts and Relationships)

I. CPC Organizini, syntax

pack z bod - is o.... ,....... and*-

procedure - (....1) is eparate;

procedure - begin end -

task -entry.- (....) ;- end-

task body - is end -;

acep - (....) do end -;

2. CPC Structuring Syntax (single level)

begin end ;

if then (else> end if

case is when end case

for sp end Loo;

while loo end 'joo;.

loo <exit when> *.., end loop-

3. Intended Function Commentar

e.g.,

-- (Send mesalse to user>

4. Functional Abstraction

e.a.,

SORT (ATABLE);

GET READ (ALIST);

30

- --....

5. Procedural Calls to Lower Units

eg.,.

MKRXRECEIVING (AAUTORECS);

6. Data Abstractions and Anonymous Data Structures

0.:.,

package -- is new STRING-FACILITY (type name);

(string, stack, queue, sequence, set, list)

31

Level 3: (Detailed Design, Independent of Target)

1. Data Tests and Operations

Logical expressions (and, or, xor)

Relational eupressions (w, /a, <, <0 >, >w)

Numerical expressions

o adding (,. -, &)

o unary (n, -* sot) .

o aultiplyins (*, /, mod, rem)

o exponentiation (**)

Set membership expressions (in, not in)

2. Data Definition

Predefined Ada data types (INTEGER, IBOOLEAN,
CHARACTER,.FLOAT)

enumerated types (type - is (-,-,-) ;)

array types (type -is array (....) of -

record types (t~ypze "is record end record ;)

3. Predefined Array Attributes

First

Last

Length

Range

32

Level 4: (Detailed, Concrete Designs, Fully Targeted

to Ada)

I. Exception Handling

exception
when
raise

2. Data Refinement

.' subtype
derived type
access type
constant
"delta
digits
range
renames
all
array slice

3. Tasking Refinements

termina'te
select
abort
delay

4. Representation Specification

for
use
at

5. Prasmas (Special Directives)

33

procedure (........: in; :out) is
begin

end

34

procedure GET TEXT (A MESSAGE : in STRING) is
-- (Build ARLA from incoming Message>
begin

.ete

end GET-TEXT;

35

procedure GET TEXT (A MESSAGE : in STRING) Ls
-- <Build AREA from inýcouing Message>

type TEXT is array (1..lO0) of CHARACTER;
AREA : TEXT;

begin

end GET TEXT;

36

b.

procedure GETTEXT (A KESSACE : in STUING) ii
-- (Build AREA from incoming Kehlage>

type TEXT ii arrsy (1..100) of CARAACTER;
AREA : TEXT;

be~io

for

loop

'•end op;

end GET TEXT;

37

procedure GET TEXT (A MESSAGE : in STRING) Is
-- <Build AREA-from in'oming Message>

type TEXT is array (l..lO0) of CHARACTER;
AREA : TEXT;

begiafor INDEX in AREA'RANGE
loop

-ý<Move pmssage into AREA, blank • feed>
if

CD -<............................>

aen
end loop;

and GET TEXT;

38

procedure GET TEXT (A MESSAGE : it STRING) is
-- <Build AREA from iacouin8.Meesage>'

type TEXT is array (1..100) of CRARACTER;
AREA : %TEXT;

begiu
for

INDEX in AREA RANGE
loop

-- <Move message into AREA, .blank line fee4s>
if

CD -- <line feed character>
them

AREA (INDEX) : ' .
else

AREA (INDEX) : MESSAGE (INDEX);
end if;

end loop;

end GET TEXT;

39

00

00

E0

coo

a'Cl) Q aa) v0 V)-

coa

04

0~

.0

LLJ<
0V)

0 LLJ
Z 0

Hi Uj~ z
(L) cnn:x C)

o 4) T 0W

14

cr.1
*

"..No)

_ Q)LLJ

w z wy :
-~00

dlj

C.))
L~J) W

44

0PM 0>

1cn

cnEn

00 o.

L 0-0 -0

C/)

44~

0 0.

<U)

icn
V) U)

(/)L5U L

<w <0< 0n
< (V (nlU

D Ln)(nu

-o V) ul

JL

431

w
0

LJ~

LLLU

A.-
'S)

461

0

0~ in

U))

oi w
I.-

V) U)

Lij LLJW

$~0 0
U) V)

V) U)
c~ CLij W 0

L0-0-

q) S. 0

47

C.D

z

V)a)

oU 0 U
L..

UU)
i.. L.

i-Ci

CD E

0-0-

cn 0. -

-~4E

C.,

CI))

CdC

* ~49

S
...

o- 2

50

Ui

A ~E--4 -

z5

<LID

zS

0 <.

:F-

0<0
0r

52

4-

duD

U) ~5E

0n

53

~Lh~(..J ~ U~m~mi~4u(LJJ

.j.

00

CLu
00 1r CL

0= 0

54

•1.

a)

0�
E
0
C)

2z 0�
0

-o

0

a)

(;?.(.0
55

00

6.~ 0 1

Cf2L

c-J
~ 4 EAyf 00

U- U

00

Vo)

57L~L.

0U

.4Z
00

LO

CD t
0 0.

.4.J t0

Ul

U)U

LLiZ

* 0

>O~ij :D

UU)

U)U

U) j zo~

U)l

59

* ~Y~I~e ia7.

c~

0

06

CC

0

0

61

CI)
13

CL

C C

1-1 0

V)S
4-1

0~
0.
C,)

62

00-0

SQ o

CL a

ci..

63

* -C

* c

0m 0.
CI)C

CL E

0 0

0 ' 0 0 Q~ C) 0 %.)0 IS0 Cn 4.iý 00 0

L.. l) L

3ýO 0 0
o o EE

~~.- O.Q U =

0; > 07 CL C .0 c-
ý4 mmUO0 -a a.L.LJOWuj

64

UU)

C)-
00 fl.0

_1-
a1 00

o 7-o

0~ 0.- W

S0 -C-'w 0 .E 0
0

-Cfl aC

0 0

~'a) 4-
0 C -0 Q)

65

E• o

Sn 00 •_

0. 0

6-o
E-•~ ~ ,,E.

(I)0
0 C

CI) - zC OC L Lc o t
-- 4-' ClI)

0 l

14-
i nil I

C,

0~o

67

l0..

0.._"

0 c00 CL. a)

S o 0-4.)

"-%) U~ Cl) C

S0 0.. 0 4-Jo.o CL> 0a --_

) ..) • '

-0 o) 4-J• > 0

C 4-.- C)

Cl)) 4-0 J~
a) ~L. -

- 0)- 0 L. (1) Cl

-8 0 Cl)

E co

-00 o0 2

68

Crr)

(i)

0 L0

69

CC.)

LUJ

LUJ LLLE. I '

W 0

> im

Ct) I4Jc Cf)
Un) (a..

.9 0 LU. <

0m 0
0 e.LLJ Z U.

!V. 0. OLu~ oL
(f) i
I OL.
L) 0m+~

0n Un

C.) L

70

00
.10W5 >. LJI

wJ A
*ýd /) (I) PI~ A i

V) 0

Lj 0 1- nmJjLg

Kj 0 oc :D:D0 C)

*-CflL) 0 a L cL-

71

package 31f is

type NUHMIS is cause 0 .. 99;

procedure TAKE (AEVEMBIR out NUVSEIS);
procedure SIEVg (EUNS9R in Is UM59S);
feact Los NOW SERVING voetrs MNUSIUs;

sad 5-1t;

package body NSE ise

SZRV A HATIC : MUHSIIS :- 1;

procedure TAKE (AMUKIII : out SUNDIIS) ise
basis

A VIHS3l : SEE? A - ATtC;
SiEV A ATtC :mSRE? A NATIC + 1;

eal TAKz7;

procedure 3IEVE (NUNSEE : in MUNDBRS) ise separate;

tuacties NOW SERVING returm PUNSIES ise separate;

sad S-a;

72

useese 37R

begLa

TAKS (Y0O UR-NUM);

it now SaIVING you TORUMBIR tbou
ScavE (YovawsumaA);
Quit;

Gad if;

sad loop;(J. and ICZC CIAV;

73

with 53;
see m51;
piveeraeueIRCKML

TOfl. Ugusga : 35353M;

begin

TAKl (YOUR NUhSIR);

it NOV SIIYMS a YOUR mumaza them
szIaVa (Tovaut UUiU;
Gait;

else
YOgR MUNDIR :m Og URNlxx -

and lop-

sea ICI-C&AN;

74

package 31 is

typ* NUMBERS is private;

procedure TA&I UANDER : out NUMBERS);
"* procedure SEIVI (NUMBER i s NUMIBES);

"fumetieou NOV -SIVZIN return NUMNERS;

private

type NUMKBRS is range 0 .. 99;

gad 51R;

75

with I R;
ccc 5J1;

procedure ICCIRZAK is

YOUI lUMNIR NUMBEIIS;

begia

TAKE (YOUR SUMBIR);
loop

if NOW SIRVING a YOUR NUNMRR then
sRavs (YOu_.RuvvlE);
ezit;

else
YOUR NUBER :- OWO SRVIIG;

@ud if;

cad loop; ZIA.I

sad IC19 CREAK;

76

package B5R is

"type NUMBERS is liaited private;

procedure TAKE (A NUMBER : oue sUNSERS);
procedure SERVE (lUmnER : in NUMBERS);
function NOW SERVING return NUMBEKS;
function "s"-(LEFT$ RIGHT : La NUMBERS)

return BOOLEAN;
function CLOSE ENOUGH (A NUMBER : in NUMBERS)

return BOOLEAN;
private

type NUMBERS is range 0 .. 99;

end 51R;

77

vitb BR;
use 571;
procedure ECS CREAK i

YOUK NUKUER : NUMBERS;

precedare GO TO DQ Le separate;

begin,

TAXE (YOUR NUMBER);
if NOW 5SERVING - YOUR NUMBSR them

sERavE (YOUR NumaBR) ;
elsif CLOSE ENOUGSa (TOUR NUMBIR) than

wbils NOWV SERVING I.YOUR NUMBER loop
swill; -w vic your turn

end loop;
SERV1 (YOUR-NUMBER;

else
GO TO DQ;

ead if;.

eud ICE-CREAH;

78

SC
E--4 4-, 0

. 0 - az) c) a
0 0

(Z o m -41
0 ..~b a) .J E Cr)
Cr1j c 04j

00A

0 0~
0 4- a4- (n

E- CL 0(1
c DO. 1- 4-1 nl

00N00- CL

- 0 000L c

0

79

a)n

.44-1

C 0

EE

CLC

e()

os

4*C%

°. It

(00
~77

81

LLJ LLJ

ymm

bi LLJWLL
LUJ

P5. U'UL

U. U)Dui LJ

U) j)
> U) LLJ U5 !

o LUz &LLJ

Q. LLJ wi C
Lu ~LLJ~ 0zX

I 0

82

- 42

ci)

00 0.

'-ci) _ cn
CL a -

c 4-ICI)83

0 0 0C
i$. S.i 0)

0 0' LC
> M0 0 C

0 C.0) onJ

0. 0

0 44C

>D so * -W~ U) 6-
U)00 C

00 c 0 4C C

CL 0 _0
-C m EE.

0 ~0 *c 0 .40-d ~
c 0 Co0 .0

m. - -C -C 0 C

o . 0 C.I 0 0
a .C
0) V i'> 0 L

o~~ 4. - ~- .
0 C. 9) OC

0 0) - L ~ U '

4) N 0O .0O

5'

00

85

-7-

equ

00

6@

C.*4

8

°'87

0 c5

0) 0 Q U)

cC U) 0

0) 0 u)*0 0
01 .L -W

o 0~ C -4.-o E o

0 0-

C, -- C M)-- -W 0L

4- 0) C D 4-EJ CO 0).C
oC C) U) .. 0

>~o o -C

- b -0c 4) 0) C)0

0~ <
C4- -u >) 00 cn

o~~- 0~a~~

0L) N 0 0 4-J

uLJ
LUJ

V)

z
- ~LU.I LUJ

CI)D
V)H

0 1 z
:D

LU 0

.0 LUULJ
LUL

89

4- j.L. 4

in- 4

CL -1 0 0 E
1. L. C a

E0 -W4-, 0 az

Oci -0- 00) N C

90

Lii

z Uj z

IC U luJ
o Lia

LL-J

CI))

j z'

C.J

91

0
L i o

I-.L

&4 Lii 0-(

2Y -0o

M LL

_ 0
LLJ

92

wL

E--4 Z (. (

LL.o

1L<

UJ L~ LLJ ELL.

CLC

93

94.

LLI
0L

o.o
LLJLcJ
z C-

LU ZO

0 4
< + LUm 0

00
LUL

o Z G))G L

Oin 00
uo LL*oCL- o Co-o*~

Cin 0

x O
w

95

LLJ 0 o J

0 CL

r LLl4.

0 ~0 00
0o L& "

,.L J <j-0U
0-o

CL C
LA. -J aa 4

C.) (J 0 00u

-Q oI
C 0

0 -0 0 -
LaD La

CLC

LlJ

O~d w 0.

E G a WLLm

U, LJ.Z

CI-

wo

a. 0

*~ w
wtcr_. w iA-

93) 0
amO *QUt

ou .- .a a. amL

I w:

C-) 0 CL97

000

-- W0 MOD

LLILJ~JL

0 B~*LL,

0 0 4b
u C.) 0 C

< <0 0
CL C w

'5J

L a

V)

oILL

LUJ
LLI .L

CLe

0.. WmmW H 1

y * fLLJW PZm

CL Qf L.#M DL.

V)c 0
LLJ LLJ(I LJ

Q C-LL J LL-1

C) . M

CL!
C z L -0ýj 1 V99

ca

Ll 0 0

0 u -) 000o 44-E- .. j (Co1 0P (D..(D Cn U 0
0 ..C U

eQ U -O))
0P 1 F(1 o4) >
- 0 0.-0n0o cC 0-. CD 2

0 Eo.0U
L4. CW 0co~O a.0 0-o aC 0~ 0 C: 0..

0 ~ 0C cC 0 ..-
#)0 mC Cp E &a-

.0 4f) >) -0
ClQ 0~ X 0 0~. 0c

100

OBJZCT ORZINTED DE95G6

1.0 Define the problem

1.1 State the problem to be solved in a single sentence

PURPOSE:

- To gain a clear, unified understanding of the problem
by all interested parties

- Answers the question: " Wbat are we trying to do? "

GUIDELINES:

- Write a single, alear and concise sentence

- tnsuee it is grammatically correct

- All problems can be stated in a single sentence

1.2 Gather, organize, and analyze information about the
problam

PURPOSE:

- To ga'her all iLformaition pertinent to understanding
and solving the problem

GUIDELINES:

- Gather all pertinent information

-'Can use formal analysis tools

- Include all levels of detail

- Organize information into logical groupings

2.0 Develop an Informal Strategy

2.1 Establish an appropriate perspective for the strategy

PURPOSE:

- Cives a starting point for the informal strategy

2.2 Write a solution to the problem in a singte paragraph

PURPOSZ:

101

- Establishes a plan of attack

"- Brings out an appropriate level of abstraction for
solution

- Unifies problem understanding

GUIDELINES:

- Use 7 plus or minus 2 sentences (Hrair limit)

- Write simple, clear and concise sentences

- Grammatically correct

- Place emphasis on writing a coherent paragraph, not
just the objects and operations

- Use a uniform level of abstraction

- Use language appropriate for the level of abstraction
and viewpoint

- The informal strategy should be a complete solution
to the problem

- Shour1d be a description of solution, not necessarily
an algorithm

- Doesn't have to be a prize winning novel

3.0 Formalise the strategy

3.1 Identify Objects of Interest and their attributes

PURPOSE:

- To determine the abstract objects in the problem

- To determine the characteristics of the abstract
objects

- To determine sets of values

3.1.1 Underline all nouns, pronouns and noun clauses
(with modifying adjectives) in the paragraph

PURPOSE:

- To create a list of all potential objects

GUIDELINES:

102

A noun clause is a clause that acts as
___O a noun; i.e.. count of the leaves

W Underline all nouns

3.1.2 Place each unique noun. pronoun or noun clause

in the column labeled OBJECT

PURPOSE:

To separate potential abstract objects

3.1.3 Identify all nouns referring to the same object
-'

PURPOSE:

- To unclutter the name space

3.1.4 Determine the space of each object and vrite it
in a column labeled SPACE

PURPOSE:

- Determination of objects of interest

GUIDELINES:

- Solution spa~ce if needed to so~ve problem

K- Problem space if needed to describe problem,
but not to solve it

3.1.5 List appropriate attributes of the objects

PURPOSE:

- Determine characteristics of abstract
objects

GUIDELINES:

- From adjectives

- Irom gathered information

"3.1.6 Select an Ada identifier for each object in the
solution space

3.1.7 Group objects that are of the same
type

PURPOSE:

103

- To visualise the &Zructural equivalence of

similar objects

- To facilitate the definition of types

- To track abstract, objects later

3.2 Identify Operattons on the objects

PURPOSE:

- To determine sets of operations

3.2.1 Underline all verbs, verb phrases and
predicates in the informal strategy

PURPOSE:

- Determine potential abstract operations

";UIDELINES:

- Predicate indicates some sort of test
followed by a nhange in control; usually
a form of the verb "to be"l

- Also underline adverbs

- Adverbs may be separated from verbs

3.2.2 Place each unique verb, verb phrase or predicate
in a column labeled OPERATION

PURPOSE:

- Separate potential operations

3.2.3 Identify all verbs, verb phrases and predicates
referring to the same operation

PURPOSE:

- To unclutter the operation-space

3.2.41 Determine the space of each operation and write
it in a column labeled SPACE

PURPOSE:

- Identification of abstract operations

3.2.5 Determine the object operated on by each

104

"operation and write it in column labeled OQJKCT

(PURPOSE:

I. - Determine what object is being operated on for
each operation

- To associate operations later with types

- To adhere to traditional design principles of
coupling and cohesion

UIDDLIVNES:

- All operatious operate on one object

- For an operation to operate on an object, the
operation must be aware of the object's
underlying representation

3.2.6 Identify other objects associated with the

operation

PURPOSE:

- To use in defining parameters

- To use in defini.8g interfaces

S.3.2.7 Select an Ada identifier for each operation and
write it in a column labeled IDENTIFIEU

PURPOSE:

- To formalize the abstract operations

3.3 9stablish interfaces among the objects

PURPOSE:

- To determine abstract data types

- To establish software resources

- To determine compilation dependencies

- To precisely define interfaces between resoearces

3.3.1 Group objects with operations together in one
place

PURPOSE:

105

'to 'asualisc logical abstract data types

To ease transition to program units

3.3.2 Associate a name with each grouping

PURPOSE:

- To formalize data types

- To ease transition to program units

3.3.3 Define types for each grouping

PURPOSI:

Determination of abstract data types

3.3.4 Transform each grouping into its appropriate

prosrap unit symbol

PURPOSE:

- To visualize software resources

* To visualize the interfaces between software
resources

3.3.5 Show access needs betwee¶ program units

GUIDELIHIS:

- Be sure to use associated objects as keys

3.3.6 Develop Ada PDL for the Booch-o-grams

PURPOSE:

- Formalize the software system

- Make use of the Ada compiler as a tool

GUIDILINSS:

- Be sure to use associated objects as keys for
e* determining parameters

3.4 Implement the Objects and Operations

106

cri

CL l

am.n

0107

z

108

0 :-:C 0 0M E

0 ~0

>o 0 0~~

0 0 0.-.C~ 0*C..0 V

c~0 0 a 0 0

a) Jc~w~ C 0
En 0 .. L . 0 1 3: 0 W .

C4' L 0 0 ",,a

U 2.'

.4-a ~ ~ in-a
s:C c .. . 00 0. a r0 Ca

rr~0 0 (04-J4'~ 0

> 0.0U

109

L. IL

.bJ~~ 0 CL Q

4.' 0 'd-CO -

C c....
>) C 0= 0

0 ~~0 L . L.

Ec. E c u a

>. w

a0 o 0- 0 o.4-. -o
> -0 0 >- 0 a'

0 C ~L 0 0 c
00

0 0 n C-%E. ' a
0. .4.. 0 .. C 0

-0U C C=0

Om 0 0i.
j-4- 00~I 4

05 -W110

0 0
z z 0

c 0 Zpi ozo 3Zp
zr .LLJmlL _ L

=i _6 -Ji

00

Li.

nCL (n(n(. 0nV)() V)(V nw)L

C) Q5 c c
0L 0 a 0 L. 0

o~OL 0 c

*0 0 m2.'-E u 0o
41 ~ o~ 00

0 -C a -w C

t-J Lu -J

0 -Z
Z z z 0 z

C12C

00

ol of

'0 c 2 0 COO E ol
0 0 001 0) L9 0 2

a) 0 4L 4-a) 0.0

*0 0 'a)I

*~ 0) - c~a

0a o

L113

00

JZ 0 z Z

oL mmo m.-oow

0

*0 0 0 w>

0 2
00c c3a0

0<~c .0 ~O~0 .O ~Q0

391-.

IQ)

C.CL

0 oi

La-4-1.C

0 0 0 o
*a." "

t~mI~
L

LLJ :t

LPU9 I CL o~

z 0 L 0

0
CL0.m 0.0G*

6 66

4). 4.G4 0 0 4) 00

0_ _ 0 0 m C .5I C L54 L0

ZO

00400
L 00 0r

4 --

15-4

rz-i L5z:
CLC LC LC

5E--

0 L0
U 0 0

.44

117

uJiL

0to

• 0

z. 0 • 0

ot

E-4

IlaI

Lii Lii
CD CD

le U

ILI 0

.00

0- 0

* 0. Uo

0 W

1 0

0

0

11

z I

DO 0 .

LLAJ

00
0 0L

0 C

012

(Li 0 L
0

.j C

CL CL

00

-J
0

a

122

z C-)
CL~

LI-

00

CL 0

0 C

0 <
-a:

a.

-~~ 0Q~

I a)o

a 0*

0CL) Z J-i-p

0 OEM =)C.

L)0CL a. d-

00

u O L AJ L. a,
a: L . 42

<00*0

o U)~)00024

LI-

.9a.
Li-

00

*4)0

LLJ ~>. 00

000 0

.5J 0)

Us- 0. 0.

0. a.

L) 025

00 L

Ww

4;- 0

-o ,E
0)
~ o..zN

'zoN

ai 00 Z
-L Z~O 0

o P G))E) E o 0:
b..

o >o>%L -- * .

0. 1. 0u- o o 0
CLI *t L

0 -b C

'~<LL m 0 C

00
9 x) 0 z

I LmJ ý z=

-~ 0 z 0
~coo 0. 02

~CL . 0)

Z 27 :

soma
CICL

em U))Cl
.j U).
0 0cow

~LLJ W

o~ ~ LLJL0 J
Zz 0

Q ZLz CLL
Vj 00 jL

LLL

*ý =

zo C) La.Q

w 00 000 v~ v

0. 0..

128

0 b

00z 0

~~O0~ .<OO.
L). 0

< <0

L) C 0 C0

M ~~~ 0 4 ,a
<Lou z o

00

C) 0 2ý1:

< 0

(90 .a.wmm4S ,*o, SUfL~NS

